INTERNATIONAL SPINAL CORD INJURY

FRACURE HISTORY EXTENDED DATA SET (Version 1.0)

The working-group consists of:

Leslie R. Morse (US), leslie.morse@ucdenver.edu, chair, William A. Bauman (US), william.bauman@va.gov; Cathy Craven (Canada), Cathy.Craven@uhn.ca; Angela Frotzler (Switzerland), angela.frotzler@paraplegie.ch; William Leslie (Canada), BLESLIE@sbgh.mb.ca; Thomas J Schnitzer (US), tjs@northwestern.edu; Karen Troy (US), ktroy@WPI.EDU; Ekaterina Zivanovic e_zivanovic@yahoo.com; and Fin Biering-Sørensen (Denmark), Fin.Biering-Soerensen@regionh.dk, chair of the International Spinal Cord Injury Data Sets committee under the International Spinal Cord Society (ISCoS) Scientific Committee.

Introduction

The purpose of the International Spinal Cord Injury (SCI) Fracture Extended Data Set is to standardize the collection and reporting of information on osteoporotic fractures in accordance with the purpose and vision of the International SCI Data Sets [1]. In the general population, the World Health Organization (WHO) criteria are used clinically to diagnose osteoporosis based on bone density in men over the age of 50 and postmenopausal women. The WHO Fracture Risk Assessment Tool (FRAX) estimates 10-year fracture risk based on bone density at the femoral neck and clinical risk factors [2]. However, information is not available in persons with SCI on fracture risk based on WHO bone density categories, or any other classification system for the prediction of fracture. Of note, the distal femoral metaphysis and proximal tibial metaphysis are not included in standard clinical DXA scans, and there are no T-scores yet available for these skeletal sites. As a result, there are no guidelines for fracture risk prediction based on bone density in the SCI population. This void in the prediction of fractures in persons with SCI limits clinical care because there are no standards for the diagnosis of osteoporosis or for initiation of medications to treat osteoporosis to prevent fractures. Other than severe immobilization, little is known concerning other potentially relevant clinical risk factors for the prediction of fracture in persons with SCI, or the association between incident fracture and bone density at SCI-relevant skeletal sites, or the possible relationship of fractures to metabolic bone markers. The data that are proposed to be collected in this data set should begin to provide meaningful information necessary to develop specific algorithms to predict risk of fracture in persons with SCI, which can be applied to identify those who are at greatest risk of fracture, and to provide an evidence-based approach to rehabilitation strategies to avoid fracture.

This data set is for the clinician and researcher in the assessment of prevalent and incident fractures, as well as factors (ambulatory status, medication use, putative osteogenic therapies, health habits, and medical comorbidities) that may be associated with fracture risk. This Extended Data Set expands upon factors assessed in the International SCI Endocrine and Metabolic Extended Data Set and includes additional imaging variables (quantitative computed tomography and soft tissue body composition by dual energy x-ray absorptiometry) for standardization of research protocols.
The information collected in this International SCI Fracture Extended Data Set will generally be used in connection with data in the International SCI Core Data Set [3], which includes information on date of birth and injury, gender, the cause of spinal cord lesion, associated injuries, and neurologic status. It will also be used together with the International SCI Endocrine and Metabolic Extended Data Set that includes calcium metabolism and dual energy x-ray absorptiometry (Bauman, et al., In Press). It is recommended that medical comorbidities be recorded using the following International SCI Basic Data Sets: Endocrine and Metabolic [4, 5], Cardiovascular Function [6], Pulmonary Function [7], and Musculoskeletal [8]. It is recommended that mobility be assessed using the Spinal Cord Independence Measure (SCIM) mobility tool [9-11]. In addition, this Data Set may be used together with other relevant International SCI Basic or Extended Data Sets, when appropriate and relevant.

The etiology of a spinal cord lesion may be traumatic or non-traumatic. All lesions to the spinal cord, conus medullaris, and cauda equina are included in the present context.

This document was produced under the auspices and approved by ISCoS and the American Spinal Injury Association (ASIA), and in cooperation with the International Society for Clinical Densitometry (ISCD).

Acknowledgements: Comments and suggestions were provided by Susan Charlifue and Lawrence Vogel, Thomas Bryce, and Marcalee Sipski Alexander.
General remark regarding date of data collection/performing the test

For each variable in this dataset the date of data collection/performing the test is required.

Because the collection of data on fracture conditions may be performed at any time following the spinal cord lesion, the date of data collection is imperative for computing the time that has lapsed after the initial spinal cord lesion. This will permit the obtained information to be related to other data collected on the same individual at various time points. However, the exact date of fracture may not be known. The date should be recorded to the extent known (year, year plus month, or year plus month plus day).

Fracture location: skull, face, neck/cervical spine, thoracic spine, lumbar spine, left and right shoulder/humerus, clavicle, elbow, forearm, wrist, finger, hip/proximal femur, midshaft femur, distal femur, proximal tibia, distal tibia, proximal fibula, distal fibula, tarsal, metatarsal, phalanges.

Fracture etiology: Fragility fracture: no event, turning over in bed, caught foot on object while wheeling, dropped object on body, stretching/physical therapy, fall from wheelchair, fall from standing height or less, weight bearing or assisted ambulation activities (exoskeletal-assisted walking, manual or robotic body-weight supported treadmill training, overhead harness systems, functional electrical stimulation, epidural spinal stimulation), other: specify. Traumatic fracture: fall from greater than standing height, sports injury, motor vehicle/motor cycle accident, other: specify. Unable to determine etiology.
Fracture treatment: none, surgery, bed rest, bracing, casting, medication, other: specify, unknown.

Fracture complications: none, skin ulcer, infection, amputation, fracture non-union/delayed union, deep venous thrombosis, autonomic dysreflexia, new contracture, loss of range of motion, increased spasticity, other: specify, unknown.

COMMENTS: In the general adult population, osteoporosis diagnosis can be established after a hip or vertebral fracture that occurs in the absence of major trauma [12]. Limited information exists on factors associated with incident fracture risk and the prevalence of fracture-related complications after SCI [13]. Moreover, wide fracture treatment variations may exist in this population [14].

VARIABLE NAME: The WHO Fracture Risk Assessment Tool (FRAX)

DESCRIPTION: This tool will estimate 10-year fracture risk based on bone density at the femoral neck and clinical risk factors [2].

CODE

<table>
<thead>
<tr>
<th>YYYY.MM.DD (Year, Month, Day)</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country: specify</td>
<td>Unknown</td>
</tr>
<tr>
<td>FRAX calculator used: specify</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Age (enter 40 if younger than 40 years), gender (male/female), weight (kg), height (cm), previous fragility (non-traumatic) fracture (yes/no), history of fractured hip in parent (yes/no), current smoking (yes/no), glucocorticoids >5 mg prednisolone/prednisone daily for 3 months or more (yes/no), rheumatoid arthritis (yes/no), secondary osteoporosis (yes/no, enter yes for all individuals with SCI), alcohol 3 or more units/day (yes/no), femoral neck BMD (g/cm²), DXA manufacturer, 10-year probability (%) of major osteoporotic fracture, 10-year probability (%) of hip fracture

COMMENTS: Because FRAX scores may vary widely based on the FRAX calculator used, input variables, country, and FRAX calculator will be recorded to compare and interpret results across regions. FRAX calculator link: http://www.shef.ac.uk/FRAX/. Follow this link to the FRAX website and choose the “calculator tool” specific to your
country. If your country is not represented, choose the country that most closely resembles the epidemiology of osteoporosis in your country from the list. The FRAX algorithm has not been validated in the SCI population. It is unknown the degree to which completeness of neurological impairment and associated degree of immobilization in those with SCI factor into the prediction of sublesional osteoporosis. Furthermore, the FRAX algorithm considers bone density at the hip and it is unknown if this tool will predict fractures at the knee (distal femoral metaphysis and proximal tibial metaphysis). Of note, there is a proposed SCI-specific fracture risk prediction algorithm [15] that has yet to be validated.

VARIABLE NAME: Osteoporosis Treatment

DESCRIPTION: This variable will assess previous (over the last 12 months) and/or current use of medications to treat osteoporosis, medications that potentially affect bone metabolism, and osteogenic physical therapies. Therapy frequency and average daily dose will also be recorded.

CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYY.MM.DD</td>
<td>(Year, Month, Day)</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Anti-resorptive:</td>
<td>alendronate, ibandronate, risedronate, zoledronic acid, denosumab, raloxifene, estrogen, other: specify</td>
</tr>
<tr>
<td>Osteo-anabolic:</td>
<td>teriparatide, abaloparatide, testosterone, other: specify</td>
</tr>
<tr>
<td>Osteogenic Exercises/Physical Therapy:</td>
<td>Functional electrical stimulation-biking, other electrical stimulation, vibration therapy, assisted ambulation, other: specify</td>
</tr>
<tr>
<td>Medications affecting bone metabolism:</td>
<td>oral corticosteroids, antiepileptics (carbamazepine, phenytoin, valproate, phenobarbital), other: specify</td>
</tr>
</tbody>
</table>

COMMENTS: Osteoporosis medications, including the antiresorptive bisphosphonates [16-20] and denosumab (a soluble antibody against receptor activator of nuclear factor kappa-B ligand (RANKL) [21], have been studied in SCI. Additionally, studies have shown new bone formation or reduced bone loss in response to electrical stimulation [22], functional electrical stimulation (FES) biking [23], ...
or vibration therapy after SCI [24]. For some therapies average daily dose and duration of use should be recorded.

QUANTITATIVE COMPUTED TOMOGRAPHY (QCT) DERIVED BONE MEASURES

COMMENTS: Clinical trials and other research targeting bone health after SCI would benefit from a higher level of detail and precision than that applied to the routine delivery of clinical care. If available, it is recommended that QCT, rather than DXA, measures be adopted as a primary outcome measure for clinical trials that address questions related to osteoporosis in persons with SCI [25]. Bone density assessment by DXA is widely used clinically, is cost-effective, and has been shown to discriminate between those with and without fractures after SCI [26]. Therefore, we recommend these QCT derived measures to be used as an adjunct to the DXA data collected in the metabolic dataset.

CODE Date: YYYY.MM.DD (Year, Month, Day)
Unknown

VARIABLE NAME: Bone Volume

DESCRIPTION: This variable will assess integral (everything within the periosteal surface), cortical, and trabecular bone volume at skeletal sites of interest, including distal femur and proximal tibia. In most cases unilateral scans are sufficient and balance cost/radiation exposure and data collection. Decisions to obtain bilateral knee scans may be made based on muscle/strength asymmetry.

CODES: Integral, cortical, and trabecular bone volume in cm\(^3\).

COMMENTS: Distal-most 30% of the femur or the proximal-most 30% of the tibia is suggested for analysis, but this can vary as long as the exact region to be analyzed is specified per skeletal site.

VARIABLE NAME: Volumetric Bone Density

DESCRIPTION: This variable will assess integral (everything within the periosteal surface), cortical, and trabecular volumetric bone density at skeletal sites of interest, including 30% distal femur and 30% proximal tibia.

CODES: Integral, cortical, and trabecular volumetric bone mineral density in g/cm\(^3\).
COMMENTS: 30% of the distal femur or proximal tibia is suggested for analysis, but this can vary as long as the exact region to be analyzed is specified per skeletal site.

VARIABLE NAME: Volumetric Bone Mineral Content
DESCRIPTION: This variable will assess integral (everything within the periosteal surface), cortical, and trabecular volumetric bone mineral content at skeletal sites of interest, including distal femur and proximal tibia.
CODES: Integral, cortical, and trabecular volumetric bone mineral content in g.
COMMENTS: 30% of the distal femur or proximal tibia is suggested for analysis, but this can vary as long as the exact region to be analyzed is specified per skeletal site.

VARIABLE NAME: Torsional Strength Index
DESCRIPTION: This variable will assess the torsional strength index at skeletal sites of interest, including distal femur and proximal tibia.
CODES: Torsional strength index in N*m/deg.
COMMENTS: Given that torsional (spiral) fractures are commonly observed after SCI [27, 28], torsional stiffness is an accurate and clinically relevant outcome [29]. 30% of the distal femur or proximal tibia is suggested for analysis, but this can vary as long as the exact region to be analyzed is specified per skeletal site.

VARIABLE NAME: Mass-weighted Principle Moments of Inertia of the Cross-Section
DESCRIPTION: This variable will assess the resistance to bending about the axes for which the bone is both strongest (Imax) and weakest (Imin) at skeletal sites of interest, including distal femur and proximal tibia.
CODES: Mass-weighted Principle Moments of Inertia of the Cross-Section (Imin and Imax) are measures of bone resistance to bending in g*mm².
COMMENTS: 30% of the distal femur or proximal tibia is suggested for analysis, but this can vary as long as the exact region to be analyzed is specified per skeletal site.

VARIABLE NAME: Cross-sectional area

DESCRIPTION: This variable will assess the cross-sectional area at skeletal sites of interest, including distal femur and proximal tibia.

CODES: Cross-sectional area in cm².

COMMENTS: 30% of the distal femur or proximal tibia is suggested for analysis, but this can vary as long as the exact region to be analyzed is specified per skeletal site.

SOFT TISSUE BODY COMPOSITION BY TOTAL BODY DUAL ENERGY X-RAY ABSORPTIOMETRY (DXA)

<table>
<thead>
<tr>
<th>VARIABLE NAME:</th>
<th>Lean Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION:</td>
<td>This variable will assess lean mass at skeletal regions of interest, including total body, arms, and legs.</td>
</tr>
<tr>
<td>CODES:</td>
<td>Lean mass of total body, arms, and legs in kilograms (kg)</td>
</tr>
<tr>
<td>COMMENTS:</td>
<td>Muscle-bone interactions are poorly defined after SCI. In persons with SCI, the magnitude of the loss of total body lean mass was correlated with the magnitude of the loss of total body or leg bone mineral content (BMC) [30]. An association between muscle and lower extremity bone density [31] or bone quality [32] has been reported after SCI.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE NAME:</th>
<th>% Fat Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION:</td>
<td>This variable will assess % fat mass at skeletal regions of interest, including total body, trunk, legs, arm, android, and gynoid regions. Percent fat mass in each region is reported as the total of the percent</td>
</tr>
</tbody>
</table>
fat on the right and left sides. DXA software is used to define
standard gynoid and android regions. FDA-approved software for
DXA imaging is available for visceral adipose tissue mass (VAT\textsubscript{mass})
and volume (VAT\textsubscript{vol}) measurement. The android fat mass region of
interest (ROI) is defined as the area that begins at the top of the iliac
crest and has a height that is 20\% of the total distance from the top of
the iliac crest to the base of the skull with the soft tissue border at the
umbilical level of the abdominal region acting as the lateral
boundary of the ROI box. VAT\textsubscript{mass} is transformed to a volume using
a constant correction factor yielding a CT validated VAT\textsubscript{vol} (cm3)
generated from an analyzed total body DXA scan. The upper
boundary of the gynoid region below the pelvis cut extends
downward from 1.5 times the height of the android region. Lateral
boundaries of the gynoid region are the outer leg cuts. Percent fat
mass in each region is reported as the total of the percent fat in the
right and left sides.

CODES:

\%
Fat mass of total body, trunk, legs, arms, gynoid region, and
android region, and VAT\textsubscript{vol} (cm3).

COMMENTS:

Adipose tissue is a major regulator of bone metabolism [33, 34]. In
persons with SCI, a direct association was reported between total
body percent fat and leg BMD, and leg fat mass was the single most
significant predictor of leg BMD or leg BMC [35]. Visceral fat is
metabolically active and is a source of adipose derived hormones,
including leptin and adiponectin, which can modulate bone
metabolism [36-45]. Android fat is considered an indicator of
visceral fat, which is more directly measured, in part, by VAT\textsubscript{vol}.

9
Appendix

INTERNATIONAL SPINAL CORD INJURY FRACTURE HISTORY EXTENDED DATA SET (Version 1.0) - DATA COLLECTION FORM

Fracture History Table

<table>
<thead>
<tr>
<th>Fracture Date YYYY/MM/DD</th>
<th>Location*</th>
<th>Etiology</th>
<th>Treatment</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Skull</td>
<td>□ no event</td>
<td>□ none</td>
<td>□ none</td>
</tr>
<tr>
<td></td>
<td>□ Face</td>
<td>□ turning over in bed</td>
<td>□ surgery</td>
<td>□ skin ulcer</td>
</tr>
<tr>
<td></td>
<td>□ Neck/ Cervical spines</td>
<td>□ caught foot on object while wheeling</td>
<td>□ bed rest</td>
<td>□ infection</td>
</tr>
<tr>
<td></td>
<td>□ Thoracic spine</td>
<td>□ dropped object on body</td>
<td>□ bracing</td>
<td>□ amputation</td>
</tr>
<tr>
<td></td>
<td>□ Lumbar spine</td>
<td>□ stretching/physical therapy</td>
<td>□ casting</td>
<td>□ fracture non-union/delayed union</td>
</tr>
<tr>
<td></td>
<td>□ Shoulder/ Humerus (L R)</td>
<td>□ fall from wheelchair</td>
<td>□ medication</td>
<td>□ deep venous thrombosis</td>
</tr>
<tr>
<td></td>
<td>□ Clavicle (L R)</td>
<td>□ fall from standing height or less</td>
<td>□ other, specify_________</td>
<td>□ autoonomic dysreflexia</td>
</tr>
<tr>
<td></td>
<td>□ Elbow (L R)</td>
<td>□ weight-bearing or assisted ambulation activities</td>
<td>□ Fragility Fracture</td>
<td>□ new contracture</td>
</tr>
<tr>
<td></td>
<td>□ Forearm (L R)</td>
<td>□ other, specify_________</td>
<td>□ Traumatic Fracture</td>
<td>□ loss of range of motion</td>
</tr>
<tr>
<td></td>
<td>□ Wrist (L R)</td>
<td>□ or unable to determine etiology</td>
<td>□ unable to determine etiology</td>
<td>□ increased spasticity</td>
</tr>
<tr>
<td></td>
<td>□ Finger (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ other, specify_________</td>
</tr>
<tr>
<td></td>
<td>□ Hip/proximal femur (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Midshaft femur (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Distal femur (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Proximal tibia (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Proximal fibula (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Distal tibia (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Distal fibula (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Tarsal (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Metatarsal (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
<tr>
<td></td>
<td>□ Phalanges (L R)</td>
<td>□ □ unknown</td>
<td>□ unknown</td>
<td>□ unknown</td>
</tr>
</tbody>
</table>

Were you hospitalized overnight or longer for the fracture(s)?
□ No □ Yes

Did the fracture(s) interfere with your therapy program or activities of daily living (transfers, walking, dressing, showers, etc)?
□ No-not at all □ Yes, a little □ Yes, a lot

*Indicate all bones broken per fracture event. One table should be completed and the 2 questions above answered for each fracture event (fractures occurring at the same time due to the same
mechanism of injury).

FRAX Input Variables and Score:
Date YYYYYMMDD: ☐ Unknown ____________
Country: ____________ ☐ Unknown__________
FRAX Calculator used: ________________ ☐ Unknown__________

Age (between 40 and 90 years, enter 40 if less than 40 years) or date of birth: __________
Gender: ☐ male ☐ female
Weight (kg): __________
Height (cm): __________
Previous fragility (non-traumatic) fracture: ☐ yes ☐ no
History of fractured hip in parent: ☐ yes ☐ no
Current smoking: ☐ yes ☐ no
Glucocorticoids >5 mg prednisolone/prednisone daily for 3 months or more: ☐ yes ☐ no
Secondary osteoporosis (enter yes for all individuals with SCI): X yes
Alcohol 3 or more units/day: ☐ yes ☐ no
Femoral neck BMD (g/cm²): __________
DXA manufacturer: __________

Result recorded from the FRAX calculator:
10-year probability of major osteoporotic fracture (%): __________
10-year probability of hip fracture (%): __________
Osteoporosis Treatment Table

<table>
<thead>
<tr>
<th></th>
<th>Current Use</th>
<th>Past Use (during last 12 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check</td>
<td>Average daily dose/treatment frequency</td>
</tr>
<tr>
<td>Anti-resorptive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alendronate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibandronate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risedronate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoledronic Acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denosumab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raloxifene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteo-anabolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teriparatide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abaloparatide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testosterone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises/Physical Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Electrical Stimulation-biking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other electrical stimulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assisted ambulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medications Affecting Bone Metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral corticosteroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiepileptic (carbamazepine, phenytoin, valproate, phenobarbital)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bone Measures:

Quantitative computed tomography: Date YYYYMMDD; □ Unknown

Integral bone volume, volumetric bone density (vBMD), and volumetric bone mineral content (vBMC) for each of the skeletal sites of interest:
Distal femur: Integral bone volume ______ (cm³) Integral vBMD_______ (g/cm³)
 Integral vBMC_______ (g)
Proximal tibia: Integral bone volume ______ (cm³) Integral vBMD_______ (g/cm³)
 Integral vBMC_______ (g)

Cortical bone volume, vBMD, and vBMC for each of the skeletal sites of interest:
Distal femur: Cortical bone volume ______ (cm³) Cortical vBMD_______ (g/cm³)
 Cortical vBMC_______ (g)
Proximal tibia: Cortical bone volume ______ (cm³) Cortical vBMD_______ (g/cm³)
 Cortical vBMC_______ (g)

Trabecular bone volume, vBMD, and vBMC for each of the skeletal sites of interest:
Distal femur: Trabecular bone volume ______ (cm³) Trabecular vBMD_______ (g/cm³)
 Trabecular vBMC_______ (g)
Proximal tibia: Trabecular bone volume ______ (cm³) Trabecular vBMD_______ (g/cm³)
 Trabecular vBMC_______ (g)

Torsional strength index for each of the skeletal sites of interest:
Distal femur ______ (N*m/deg) Proximal tibia ______ (N*m/deg)

Mass-weighted principle moments of inertia of the cross-section for each of the skeletal sites of interest:
Distal femur: I_{max} ______ (g*mm²) I_{min} ______ (g*mm²)
Proximal tibia: I_{max} ______ (g*mm²) I_{min} ______ (g*mm²)

Cross sectional area for each of the skeletal sites of interest:
Distal femur ______ (cm²) Proximal tibia ______ (cm²)

Body Composition:
Dual energy x-ray absorptiometry: Date YYYYMMDD; □ Unknown

Lean mass each region of interest:
Total body ______ (kg) Arms ______ (kg) Legs ______ (kg)

% Fat for each region of interest:
Total body _________ (%)
Gynoid Region _______%
Android Region _______%

Visceral adipose tissue (VAT) area _______(cm²)

REFERENCES

