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Biomarkers Subgroup Guidance Document  
 

Mitochondrial Disease Biomarkers 

Clinical Assessments 

Height; Weight; Head 
Circumference 

Refer to the Physical Exam CRF for guidance (Parikh et al. 2017) 

Hearing Refer to Audiology Outcomes Subgroup Hearing Loss in Mitochondrial 
Disease CRF for guidance 

(Parikh et al. 2017; Parikh et al. 
2013) 

Vision Refer to Ophthalmology Outcomes Subgroup Ophthalmology Test 
Guidance Document 

(Parikh et al. 2017; Parikh et al. 
2013) 

Cardiac Evaluation Refer to Exercise Physiology Subgroup Echocardiogram, EKG, Holter 
Exam and Cardiac MRI CRFs for guidance 

(Parikh et al. 2017; Parikh et al. 
2013) 

Cycle Ergometry The characterization of exercise intolerance in mitochondrial disease is 
performed using cycle ergometry with measurements of VO2, VCO2, 
respiratory exchange ratio (RER = VCO2/VO2), heart rate, minute 
ventilation, rating of perceived exertion, and cardiac output. VO2 

max correlates with the mtDNA mutation load in exercising muscle, 
suggesting that the mutation load, rather than the genotype, determines 
the oxidative capacity of skeletal muscle in mitochondrial myopathies. 
Therefore, measurement of VO2 max via cycle ergometry is a non-
invasive and effective method to assess oxidative capacity in the skeletal 
muscle of patients with mitochondrial myopathy.  

Refer to Exercise Physiology Subgroup Staged Exercise Tolerance Test 
CRF for guidance 

(Bergs et al. 2022; Bhatia, Cohen, 
and N 2021; Jeppesen et al. 2021; 
Kurihara et al. 2022) 

Indirect Calorimetry Indirect calorimetry (oxygen consumption, VO2) in patients with 
mitochondrial disease shows elevated resting energy expenditure (REE) 
or hypermetabolism, predicting a more accelerated biological aging. 

(Sturm et al. 2023) 

Serum / Plasma 

Acylcarnitines Carnitine plays an essential role in the transfer of long-chain fatty acids 
into the mitochondria for beta-oxidation. The elevated NAD+ /NADH ratio 
that can occur in mitochondrial diseases can cause secondary inhibition 
of NADH-generating reactions. In particular, long-chain hydroxyl-acyl-
CoA dehydrogenase enzymatic activity can be inhibited by high NADH 
concentration. Furthermore, the mitochondrial trifunctional protein is 
bound to complex I, and this interaction can be disrupted by genetic 
defects affecting complex I. These events may lead to the accumulation 
of long-chain hydroxyacylcarnitines. Quantitative measurement of plasma 
acylcarnitine levels is a clinical assay that may include the analysis of 
free carnitine. The use of free to total carnitine ratio as a marker of 
mitochondrial disease has been recommended as an adjuvant screening 
tool as acylcarnitines may accumulate in mitochondrial disease due to 

(Suomalainen 2011; Haas et al. 
2007; Mancuso et al. 2009; Longo, 
Amat di San Filippo, and Pasquali 
2006) 

https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3095_Physical_Exam.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3126_Hearing_Loss_Mitochondrial_Disease.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3126_Hearing_Loss_Mitochondrial_Disease.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3140_Mitochondrial_Disease_Ophthalmology_Test_Guidance.pdf
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3140_Mitochondrial_Disease_Ophthalmology_Test_Guidance.pdf
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3137_Echocardiogram.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3123_Electrocardiogram_(ECG).docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/SharedForms/F1059_Holter_Examination.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/SharedForms/F1059_Holter_Examination.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/SharedForms/F1056_Cardiac_Magnetic_Resonance_Imaging.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3128_Staged_Exercise_Tolerance_Test.docx
https://www.commondataelements.ninds.nih.gov/sites/nindscde/files/Doc/Mito/F3128_Staged_Exercise_Tolerance_Test.docx
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impaired oxidation. Secondary carnitine deficiencies can occur in 
mitochondrial diseases in the setting of renal Fanconi syndrome. 

Amino Acids  Elevated alanine, and proline can be observed in mitochondrial diseases 
as they suggest a persistent lactate increase. Hyperprolinemia is the 
results of the inhibition of proline dehydrogenase by elevated lactate. 
Elevated plasma alanine levels, when present, may be a useful indicator 
of long-standing lactate and pyruvate accumulation because alanine is in 
equilibrium with pyruvate through alanine aminotransferase. Alanine can 
be affected by the prandial state. Alanine/lysine, 
alanine/(phenylalanine+tyrosine), alanine/leucine and proline/leucine ratios 
provide improved specificity and exclude spurious elevations. Decreased 
citrulline is a feature of some mitochondrial diseases, including MT-ATP6 
mitochondrial disease. 

(Bedoyan et al. 2020; Haas et al. 
2008; Kowaloff et al. 1977; Tise et al. 
2023) 

Ammonia Hyperammonemia can occur in the context of mtDNA depletion 
syndromes presenting with a hepatocerebral phenotype. Some of these 
disorders may have hepatic involvement that can be severe, and in some 
patients, hepatic failure occurs triggered by an infection or the use of 
sodium valproate therapy (e.g., Alpers syndrome). Furthermore, 
hyperammonemia may occur in the setting of TMEM70 deficiency and 
mitochondrial carbonic anhydrase VA deficiency.  

(Parikh et al. 2009) 

CBC A complete blood count with differential should be considered annually in 
patients with mitochondrial disease. Sideroblastic anemia is a known 
feature of several mitochondrial diseases, including Pearson syndrome 
and MLASA. Neutropenia has been reported in Barth syndrome. 
Leukopenia, thrombocytopenia, and pancytopenia have been reported 
although not as frequently. Patients at higher risk of anemia or bone 
marrow suppression (such as Pearson syndrome) should have a 
complete blood count checked more frequently, based on the patient’s 
clinical course. 

(Parikh et al. 2017) 

Cell-Free mtDNA (cf-mtDNA) Cell-free mtDNA (cf-mtDNA) has been mostly evaluated in plasma 
samples as a potential biomarker that may be increased in necrosis, 
apoptosis, tumors, or inflammation. Increased plasma levels of cf-
mtDNA were found in acute events or progression of neurodegeneration 
in longitudinal assessments of patients with MELAS syndrome. Cf-
mtDNA were found to be higher in a cohort of patients with single 
mtDNA deletion and mtDNA depletion syndromes than in controls. 

(Maresca et al. 2020; Trumpff et al. 
2021; Trifunov et al. 2021) 

CPK 
 
 
 
 
 

The determination of CK activity is a commonly used assay in the 
investigation of skeletal muscle disease. Patients with mitochondrial 
disease can have increases in CPK or even episodes of rhabdomyolysis. 
Mitochondrial myopathies do not lead to marked increases in creatine 
kinase at baseline except for TK2 related mitochondrial DNA depletion 
syndrome. An initial evaluation of muscle function will require measuring 

(Davis et al. 2013; Haas et al. 2007; 
Suomalainen 2011; Parikh et al. 
2017) 
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 CK. A patient with an established myopathy may need annual CK levels. 

Creatine Creatine plays a fundamental role in the maintenance of 
phosphocreatine and the replenishment of ATP in tissues with high 
energetic demand. Elevations in plasma creatine are specific although 
not sensitive to mitochondrial diseases. Patients with mitochondrial 
disease may have elevated creatine in plasma and low ratios of 
phosphocreatine/creatine in tissues. Elevated plasma creatine may be a 
specific but not sensitive biomarker for mitochondrial disease.  

(Shaham et al. 2010; Maresca et al. 
2020; Pajares et al. 2013) 

Cystatin C Based on a pediatric study of patients with mitochondrial disease, serum 
creatinine may not fully reflect renal function due to the relatively small 
body mass of patients. Cystatin C has a higher diagnostic accuracy to 
assess glomerular filtration rate (GFR) in mitochondrial disease. 
Therefore, cystatin C should be taken as the first step to evaluate 
glomerular filtration rate in mitochondrial diseases and should be 
included in the routine follow-up. 

(Lee et al. 2009; Parasyri et al. 2022) 

Basic Chemistries Evaluation of a mitochondrial patient in the acute setting should include 
the screening of routine chemistries. Standard electrolytes (Na, K, Cl, 
CO2, BUN, Creatinine) can provide insight into developing renal 
dysfunction new onset diabetes, and acid-base disturbances. The 
corrected anion gap has been shown to be significantly elevated in some 
patients with mitochondrial disease. 

(Parikh et al. 2017) 

Endocrine Testing Annual HbA1C, fasting glucose and insulin, thyroid hormones (TSH and 
T4), morning cortisol, and screening for hypoparathyroidism (serum 
calcium, magnesium, phosphate, parathyroid hormone, vitamin D (25-
OHD and 1,25-OHD); urine: creatinine, calcium, and phosphate) can be 
considered in individuals with mitochondrial diseases. 

(Ng et al. 2022; Parikh et al. 2017) 

Fibroblast Growth Factor 21 
(FGF-21) 

Mitochondrial diseases produce a transcriptional response mimicking 
starvation which includes increased expression of the metabolic regulator 
and hormone-like cytokine FGF-21. It leads to mobilization of lipid stores 
and production of ketone bodies. Several studies have shown FGF-21 
levels to be elevated in patients with mitochondrial disease where 
myopathy is a feature. In a study serum FGF-21 proved to be a sensitive 
and specific pediatric mitochondrial disease biomarker and outperformed 
GDF-15 and lactate.  

(Riley et al. 2022; Peñas et al. 2021; 
Chau et al. 2010; Davis et al. 2013; 
Gavrilova and Horvath 2013; Liang, 
Ahmad, and Sue 2014; Su et al. 
2012; Suomalainen 2013; 
Suomalainen et al. 2011; Tyynismaa 
et al. 2010; Turnbull 2011) 

Gelsolin Gelsolin, a cytoskeletal protein that regulates actin filament assembly 
and disassembly, has been proposed as a potential biomarker for 
mitochondrial dysfunction because mitochondria are known to bind and 
move along microtubules and actin filaments. A study showed decreased 
plasma gelsolin levels in a group of patients with mitochondrial disease 
and suggested that the combination of this biomarker with FGF-21 and 
GDF-15 levels improved the diagnostic utility compared to using each 
one alone. 

(Peñas et al. 2021; Marín-Buera et al. 
2015) 
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Growth Differentiation Factor 
15 (GDF-15) 

Growth Differentiation Factor 15 (GDF-15), a member of the 
transforming growth factor beta superfamily, and has a role in regulating 
cellular response to stress and inflammation. It has been proposed as a 
useful biomarker for mitochondrial diseases. Although it is primarily 
elevated in those mitochondrial diseases affecting the muscle, it may be 
more sensitive in detecting mitochondrial dysfunction in other organs 
when compared to FGF-21  

(Bermejo-Guerrero et al. 2023; Fujita 
et al. 2015; Yatsuga et al. 2015; 
Davis, Liang, and Sue 2016) 

Neurofilament light chain 
(NF-L) 

NF-L is a neuron-specific protein. It is a marker of disease activity and 
progression that has been evaluated in a number of different 
neurological conditions. A study showed that NF-L was highest in 
patients with multi-systemic involvement that included the central 
nervous system such as those with the m.3242A>G pathogenic variant 
in MT-TL1. NF-L is a marker for central nervous system involvement. 
Levels of NF-L may correlate with the degree of ongoing damage. 

(Sofou et al. 2019; Varhaug et al. 
2021) 

Hepatic Panel (Albumin, Alk 
Phos, ALT, AST, GGT, INR, 
PT, PTT) 

Isolated liver disease is most frequently caused by defects of mtDNA 
maintenance such as mtDNA depletion. Some mitochondrial diseases 
have hepatic involvement that can be mild to severe. In some patients, 
hepatic failure occurs (e.g., Alpers disease). Patients with pathogenic 
variants in POLG are at a higher risk of developing valproate-induced 
liver failure.  

(Haas et al. 2007; Parikh et al. 2017) 

Lactate Lactate, the product of anaerobic glucose metabolism, accumulates 
when aerobic metabolism is impaired, which causes a shift in the 
oxidized-to-reduced NAD+: NADH ratio within mitochondria (i.e., 
decrease in the oxidized nicotinamide-adenine dinucleotide/reduced 
nicotinamide-adenine dinucleotide “redox” ratio). Normal lactate does 
not exclude a mitochondrial disorder and increases in lactate are not 
specific to these diseases. Careful collection is important since a variety 
of difficulties with collection including prolonged tourniquet use and 
struggling during blood draw can elevate levels.  

(Debray et al. 2007; Yamada et al. 
2012; Feldman et al. 2017) 

Lactate / Pyruvate Ratio The blood lactate-to-pyruvate (L:P) ratio reflects the equilibrium between 
product and substrate of the reaction catalyzed by lactate 
dehydrogenase. The L:P ratio is correlated with the cytoplasmic 
NAD+:NADH ratio and is used as a marker of the redox state. With 
impairment of cellular respiration, pyruvate oxidation is altered by lactate 
dehydrogenase resulting in an increase in the L:P ratio. In pyruvate 
dehydrogenase complex deficiency (PDHC deficiency), the metabolic 
block is upstream of the respiratory chain. The L:P ratio is within normal 
range. An increased L:P ratio (>25) suggests primary or secondary 
respiratory chain dysfunction. A ratio <25 may indicate a PDH defect in 
the appropriate clinical setting. 

(Debray et al. 2007; Pavlu-Pereira et 
al. 2020; Yamada et al. 2012) 

LDH  (Sharma et al. 2021)  

Lipid Panel A serum lipid panel (total cholesterol, LDL, HDL, non-HDL cholesterol, (Clarke et al. 2013; Jacobson et al. 
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and triglycerides) will enable the assessment of general lipid metabolism, 
which has been suggested to be influenced by mitochondrial dysfunction. 
Indeed, triglycerides elevation and dyslipidemia have been reported to be 
observed in mitochondrial disease. Lipid panel metabolites are measured 
by enzymatic colorimetric methods with calculations for LDL and non-
HDL. 

2014; Naviaux 2004) 

Metabolomics Metabolomics, or metabolic profiling, combines analytical chemistry 
methods and statistical analyses to quantitatively characterize the set of 
small molecule (typically <1500 Da) compounds in a biospecimen. 
Metabolic profiling can be performed by NMR or LC-MS/MS. NMR 
methods are non-destructive but less sensitive. LC-MS methods can be 
targeted to defined sets of metabolites (typically up to dozens) or 
untargeted which comprehensively report all measurable analytes 
including those of unknown chemical identity. The chromatographic 
approach used in an LC-MS method determines the chemical natures of 
the compounds that can be characterized; no single method 
exhaustively covers the entire metabolome. Combinations of LC-MS 
methods applied to a single biospecimen can together assess a wide 
biochemical spectrum including polar and nonpolar compounds with the 
total number of identified metabolites in untargeted methods reaching 
hundreds (and thousands if unidentified features are included). Because 
mitochondrial dysfunction can have wide-ranging biochemical 
consequences, metabolic profiling can reveal distinctive “metabolic 
fingerprints.” Challenges facing metabolomics studies include biological 
differences among participants (genetic, physiological, dietary, etc.) as 
well as technical variability of methodologies among labs. Importantly, 
measurements are in relative units and concentration determination 
requires developing focused calibration curve(s). Thus, careful study 
design, sample collection and data processing are critical. Comparison 
of patients with healthy or disease controls have recapitulated classic 
markers (lactate, pyruvate, alanine) and have also identified promising 
new markers. Metabolic profiling combined with therapeutic trials can 
also spotlight potential therapeutic markers. 

(Sharma et al. 2021; Buzkova et al. 
2018; Delaney et al. 2017; Pirinen et 
al. 2020; Ruiz et al. 2019; Thompson 
Legault et al. 2015) 

Vitamin Levels Essential soluble vitamins (B12, Folate, Niacin, Pyridoxal 5-phosphate, 
Riboflavin, Thiamine, Pantothenic acid, and Biotin) are required for 
proper metabolic function. Deficiencies secondary to malabsorption 
syndromes or malnourished states can be found in mitochondrial 
disease patients. Patients presenting with vitamin deficiencies may 
present with symptoms that exacerbate, or overlap, with mitochondrial 
disease. Methods to identify soluble vitamin deficiencies include liquid-
chromatography-tandem mass spectrometry (LC-MS/MS) with stable 
isotope dilution, competitor-binding receptor assays, and competitive-

(Morava et al. 2006; Zweers et al. 
2018) 
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binding immunoenzymatic assays from plasma, serum or blood 
collected in a light-protected container. 

Pyruvate Increases in pyruvate signals dysfunction of the cellular oxidative 
process. Normal pyruvate does not exclude a mitochondrial disease 
and increase in pyruvate are not specific to these diseases. The 
measurement of a lactate:pyruvate (L:P) ratio is considered a helpful 
tool in the evaluation of mitochondrial disease. Careful collection is 
important since a variety of difficulties with collection including 
prolonged tourniquet use and struggling during blood draw can elevate 
levels. In addition, whole blood pyruvic acid collection requires a special 
tube containing 2.5 mL of 6% perchloric acid to maintain stability. 
Alternative sample types, such as cerebrospinal fluid (CSF) or plasma, 
eliminates the need for this stabilizer. Pyruvic acid concentrations can 
be measured with enzyme-based spectrophotometric and GCMS 
methods.  

(Debray et al. 2007; Yamada et al. 
2012; Feldman et al. 2017; Fleischer 
et al. 1970) 

Purines and Pyrimidines The accumulation of specific nucleotides, such as thymidine and 
deoxyuridine, in plasma is an indication of imbalanced cytosolic dNTP 
and mitochondrial dNTP pools as there is an interchange of these 
nucleotides between cellular compartments. An imbalance of 
mitochondrial dNTPs can impair mtDNA synthesis, leading to 
mitochondrial disease. Biallelic variants in the gene encoding thymidine 
phosphorylase, which presents as mitochondrial neurogastrointestinal 
encephalopathy disease, is an example of a mitochondrial disease 
presenting with remarkably elevated plasma thymidine and deoxyuridine. 
These metabolites, as well as others, can be measured as a purine and 
pyrimidine panel by LC-MS/MS.  

(Balasubramaniam, Duley, and 
Christodoulou 2014)  

Urine 

Acylglycines Glycine conjugation is an important detoxification system of the liver for 
preventing the accumulation of acyl-CoA esters in several inherited 
metabolic disorders as well as exogenous metabolites. Acylglycines in 
urine are often the direct expression of accumulation of the 
correspondent acyl-CoA esters in the mitochondrion from intermediate 
metabolism, specifically mitochondrial defects in fatty acid oxidation and 
branch-chain amino acid catabolism, amongst other organic acidemias. 
Urine acylglycines can be quantified by GCMS or LC-MS/MS. 

(Bonafé et al. 2000; Gregersen 1985) 

Amino Acids Urine amino acid analysis may detect generalized aminoaciduria 
indicating tubular manifestations. Kidneys have a high energetic demand 
and contain a high density of mitochondria, making them susceptible to 
mitochondrial dysfunction. 

(Haas et al. 2007; Suomalainen 
2011; Govers et al. 2021) 

Metabolomics As noted above (see serum/plasma metabolomics), metabolomics 
measurements provide biochemical fingerprints consisting of dozens to 
thousands of analyte measurements which can be analyzed to identify 

(Venter et al. 2015; Esterhuizen et al. 
2019) (Kelley 1905) 
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distinctive features for biomarker development. While urine is easily 
obtainable, a notable challenge for metabolic profiling is the 
concentration variability. Several studies have utilized urine metabolic 
profiling to identify distinguishing features in fatty acid oxidation, one-
carbon metabolism, central carbon metabolism, and amino acid 
metabolism. 

mtDNA Heteroplasmy For mitochondrial diseases associated with specific mtDNA variants (i.e., 
m.3234A>G), urinary epithelial mtDNA heteroplasmy levels are 
correlated with disease burden and progression after adjusting for patient 
sex, age, and total mtDNA content. As a less invasive matrix than blood 
or muscle, mtDNA heteroplasmy in urine sediment may be a useful tool 
for diagnosing mitochondrial disease. 

(Grady et al. 2018; Whittaker et al. 
2009)  

Organic Acids Urine organic acid testing is useful in the diagnosis and monitoring of 
patients with inborn errors of organic acid metabolism, inborn errors of 
amino acid metabolism, urea cycle defects, and defects of the 
mitochondrial respiratory chain. Organic acid analysis may fail to detect 
certain disorders that are characterized by minimal or intermittent 
metabolite excretion. Metabolic changes observed in mitochondrial 
diseases include increased levels of TCA intermediates, lactate, 
pyruvate, 3-methylglutaconic acid). 

(Barshop 2004; Haas et al. 2007; 
Suomalainen 2011; Gill et al. 2023) 

Purines and Pyrimidines The accumulation of specific nucleotides, such as thymidine and 
deoxyuridine, in plasma is an indication of imbalanced cytosolic dNTP 
and mitochondrial dNTP pools as there is an interchange of these 
nucleotides between cellular compartments. An imbalance of 
mitochondrial dNTPs can impair mtDNA synthesis, leading to 
mitochondrial disease. Biallelic variants in the gene encoding thymidine 
phosphorylase, which presents as mitochondrial neurogastrointestinal 
encephalopathy disease, is an example of a mitochondrial disease 
presenting with remarkably elevated plasma thymidine and deoxyuridine. 
These metabolites, as well as others, can be measured as a purine and 
pyrimidine panel by LC-MS/MS. 

(Balasubramaniam, Duley et al. 
2014) 

Urinalysis (UA) The kidney plays a key role in the excretion of by-products of cellular 
metabolism, acid-base, and electrolyte balance. The high density of 
mitochondria in the kidney as well as its high energetic demand results 
in abnormalities (glomerulonephritis, glucosuria in diabetes, bilirubinuria 
in liver disease, etc.) from mitochondrial dysfunction often detected by 
urinalysis for specific gravity, proteinuria, glucose, pH, ketones, 
hemoglobin, nitrite, leukocyte esterase, bilirubin, and urobilinogen.  

(Govers et al. 2021) 

3-Methylglutaconic Acid 3-Methylglutaconic acid (3-MGA) is an intermediate of mitochondrial 
leucine catabolism. However, in mitochondrial diseases, and other 
inborn errors of metabolism, 3-MGA is an excreted biochemical marker 
potentially arising from a novel acetyl CoA diversion pathway that 

(Jones, Klacking, and Ryan 2021; 
Wortmann et al. 2006; Wortmann et 
al. 2009) 
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appears to be secondary to electron transport chain, mitochondrial lipid 
membrane, and metabolic dysfunction. Quantification of this metabolite 
in urine is often provided in urine organic acid analyses or by direct 
measurement methods.  

CSF 

5-Methyltetrahydrofolate Folate is a vitamin that plays a critical role in trafficking one-carbon units 
in metabolic processes. In its active form, tetrahydrofolate (THF) carries 
methyl units in several different oxidation states and the 5-
methyltetrahydrofolate (5-MTHF) form is the one required for numerous 
methylation reactions and is also the primary form found in CSF. 
Deficiency of folate in the brain may occur with either low or normal levels 
in the periphery. While cerebral folate deficiency can result from inherited 
defects in folate transporters, it has also been reported secondarily in 
multiple mitochondrial diseases (especially Kearns-Sayre syndrome) 
where levels have been reported to be very low to normal. 5-MTHF is 
typically quantified by HPLC with fluorescence or electrochemical 
detection on CSF samples that are frozen soon after collection.  

(Batllori et al. 2018; Pope et al. 2019) 

Amino Acids Elevated alanine, proline, or tyrosine can be observed in mitochondrial 
diseases. Elevated plasma alanine levels, when present, may be a useful 
indicator of long-standing pyruvate accumulation. 

(Guerrero-Molina et al. 2022) 

Glucose (with simultaneous 
blood glucose) 

CSF glucose levels may be decreased due to consumption by 
microorganisms, impaired glucose transport, or increased glycolysis. CSF 
glucose is normal in most mitochondrial diseases. GLUT1 deficiency 
syndrome is a treatable neurometabolic disorder, characterized by a low 
concentration of glucose in CSF and a decreased CSF to blood glucose 
ratio. This decrease in CSF glucose limits ATP generation by cellular 
energetics. 

(Haas et al. 2007; Leen et al. 2013) 

Lactate Lactate concentration in CSF results from a balance between efflux and 
influx through the blood–brain barrier and through the plasma membrane 
of central nervous system cells. Lactate production is increased with 
defects in oxidative phosphorylation. CSF lactate concentrations were 
more sensitive for mitochondrial diseases than blood lactate 
concentrations. Both pyruvate and lactate concentrations are increased in 
PDH deficiency, but the L/P ratio remains normal or only slightly 
decreased. Measurement of CSF lactate is performed on samples that 
are frozen soon after collection using an enzymatic assay or with a UV 
method. 

(Haas et al. 2007; Suomalainen 
2011) 
(Benoist et al. 2003; Guerrero-Molina 
et al. 2022; Yamada et al. 2012) 

Metabolomics As noted above (see serum/plasma metabolomics), metabolomics 
measurements provide biochemical fingerprints consisting of dozens to 
thousands of analyte measurements which can be analyzed to identify 
distinctive features for biomarker development. There are limited studies 
applying metabolomics to CSF samples though one study identified 

(Salvador et al. 2023) 
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several potential markers for one form of mitochondrial disease. 

Neurotransmitters Levels of CSF biogenic amines have been found to be altered in 
mitochondrial diseases which is thought to be due to secondary 
mechanisms. One study of 29 patients found high CSF levels of 
homovanillic acid (and low 5-methyltetrahydrofolate), indicative of 
dopamine dysregulation. In another study, low levels of CSF 
neurotransmitters have been reported in pediatric patients with severe 
presentations of mitochondrial diseases. These compounds can be 
quantified using HPLC or electrochemical methods.  

(Batllori et al. 2018; Rodan, Gibson, 
and Pearl 2015; Garcia-Cazorla et al. 
2008) 

Protein CSF is secreted by the choroid plexuses, around the cerebral vessels, 
and along the walls of the ventricles of the brain. Increases are observed 
in some disorders such as Leigh disease, Alpers syndrome, and Kearns-
Sayre syndrome. CSF total protein can be measured with 
spectrophotometric methods. 

(Haas et al. 2007) 

Pyruvate Pyruvic acid, an intermediate metabolite, plays an important role in 
linking carbohydrate and amino acid metabolism to the tricarboxylic acid 
cycle, the fatty acid beta-oxidation pathway, and the mitochondrial 
respiratory chain complex. Even when plasma levels of pyruvate, or 
lactate, are normal, CSF levels may be elevated in patients with 
mitochondrial disease who have CNS manifestations. 

(Haas et al. 2007; Benoist et al. 
2003; Suomalainen 2011; Yamada et 
al. 2012) 

Fibroblasts 

ATP Synthesis Measures the amount of ATP produced by ATP synthesis which is 
typically decreased in almost all mitochondrial diseases. 
Bioluminescence assay kits are available to measure ATP production 
in cell suspensions. 

(Shepherd et al. 2006) 

Blue Native Gel 
Electrophoresis 

(OXPHOS) 

Clear native electrophoresis and blue native electrophoresis are 
microscale techniques for the isolation of membrane protein complexes. 
Proteins are visualized in blue native gels with Coomassie Blue G-250 
dye. Blue native PAGE retains enzyme complexes in their intact and 
enzymatically active form. Both the amount of the fully assembled 
complex, and the presence of any smaller stalled assembly 
intermediates, can then be determined. 

(Calvaruso, Smeitink, and Nijtmans 
2008; Carrozzo et al. 2006) 

Coenzyme Q10 Coenzyme Q10 levels can be determined by radiolabeled substrate 
assays looking at production. Separate subunit quinones or whole 
Coenzyme Q10 levels can be detected and quantified using High-
performance liquid chromatography (HPLC) -Mass spectrometry and 
HPLC-electrochemical techniques (with standards), and ultra-
performance liquid chromatography-electrospray tandem mass 
spectrometry (UPLC-ESI-MS/MS). Assays are all used is to determine 
Coenzyme Q10 deficiency. Moreover, assays which look at subunits 
that build Coenzyme Q10 can often determine enzyme/level of 
abnormality. One disadvantage for total Coenzyme Q10 level 

(DiMauro, Quinzii, and Hirano 2007; 
López et al. 2006; Mollet et al. 2007; 
Quinzii et al. 2006; Herebian et al. 
2017) 
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determination is that cannot differentiate between secondary and 
primary deficiencies. 

High Resolution 
Respirometry 

Live cellular respiration (Complexes I-V) allows measurement of 
parameters such as mitochondrial membrane potential, reserve 
capacity for ATP generation, and Complex I-IV substrate utilization. 
This testing assesses functional characteristics of intact mitochondria 
within living tissues. 

(Cameron, Levandovskiy, MacKay, 
and Robinson 2004; van den Heuvel, 
Smeitink, and Rodenburg 2004) 

Lactate / Pyruvate Ratio The fibroblast lactate-to-pyruvate (L:P) ratio reflects the equilibrium 
between product and substrate of the reaction catalyzed by lactate 
dehydrogenase. The L:P ratio is correlated with the cytoplasmic 
NADH:NAD+ ratio and is used as a marker of the redox state. With 
impairment of cellular respiration, pyruvate oxidation is reduced, and 
lactate is increased, resulting in an increase in the L:P ratio. In pyruvate 
dehydrogenase deficiency (PDH deficiency), the metabolic block is 
upstream of the respiratory chain. Both pyruvate and lactate 
concentrations are increased in PDH deficiency, but the L/P ratio 
remains normal or only slightly decreased. 

(Cameron, Levandovskiy, MacKay, 
and Robinson 2004) 

OXPHOS Enzymology OXPHOS enzymology assesses mitochondrial function by determining 
maximal enzymatic activity of the individual electron transport system 
(ETS) complexes in disrupted mitochondria by spectrophotometry. 
However, many aspects of mitochondrial function that occur in live cells 
cannot be assessed by OXPHOS enzymology. 

(van den Heuvel, Smeitink, and 
Rodenburg 2004) 

Pyruvate Dehydrogenase 
Enzymology 

The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the 
rate-limiting step in aerobic glucose oxidation and is thus integral to 
cellular energetics. Pyruvate dehydrogenase (PDH) deficiency is an 
inherited disorder of carbohydrate metabolism. PDH deficiency is due to 
loss-of-function mutation in one of the five component enzymes, most 
commonly E1α-subunit. The common clinical presentation ranges from 
fatal infantile lactic acidosis in newborns to chronic neurological 
dysfunction. Historically, pyruvate dehydrogenase specific activity is 
typically determined by measuring the decarboxylation of 1-14C-pyruvate 
to 14CO2 and was expressed as a unit of 14CO2 production per tissue 
mass per unit of time. A number of colorimetric kits are available for 
assay such that one micromole of NADH production is equal to one unit 
of PDH activity. 

(Cameron, Levandovskiy, Mackay, 
Tein, et al. 2004; Schwab et al. 2005) 

Seahorse Live Cell 
Metabolic Analysis 

Seahorse respirometry is a cellular assay that provides a functional 
assessment of ETC function by measuring the rates of oxygen 
consumption and extracellular acidification. Tissue samples can 
include fibroblasts, muscle cells, and peripheral white blood cells and 
measurements can be performed on intact cells, permeabilized cells or 
isolated mitochondria. While measurements provide quantitative 
measurement of ETC parameters, methodological challenges include 

(Acin-Perez et al. 2021; Ogawa et al. 
2017) 
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sample amount and quality as well as technical expertise. Thus, such 
measurements are best performed at specialized labs and with fresh, 
rapidly prepared sample. Fibroblasts can be obtained from punch skin 
biopsies which are minimally invasive. One study demonstrated that 
respirometry showed greater sensitivity than measurements of 
individual respiratory chain components.  

Leukocytes 

Coenzyme Q10 Level Coenzyme Q10 deficiency can be detected by decreased levels. 
Common assay approaches as described in the fibroblast section. 

(Duncan et al. 2005) 

Intracellular Free Glutathione 
(fGSH), Oxidized Disulfide 
(GSSG), fGSH/GSSG Ratio 

Glutathione (GSH) is the main non-protein thiol in cells. GSH functions 
are dependent on the redox-active thiol of its cysteine moiety that serves 
as a cofactor for a number of antioxidant and detoxifying enzymes. While 
synthesized exclusively in the cytosol from its constituent amino acids, 
GSH is distributed in different compartments, including mitochondria 
where its concentration in the matrix equals that of the cytosol. Free 
GSH/GSSG ratio is an indicator of redox metabolism (oxidative stress 
marker). Glutathione decreases in mitochondrial disease. 

(Atkuri et al. 2009) 

mtDNA Copy Number Defects in mitochondrial copy number are frequently indications of 
abnormal mitochondrial DNA maintenance. The mutations causing this 
depletion are frequently encoded by nuclear genes which encode genes 
essential to replication of mitochondrial DNA, mitochondrial nucleotide 
pool, mitochondrial nucleotide import, and mitochondrial dynamics 

(El-Hattab, Craigen, and Scaglia 
2017) 

mtDNA Deletion/Duplication Mitochondrial DNA deletion and duplication abnormalities are typically 
evaluated using sequencing techniques. These can range from multi-
systemic disorders to disorders of only impacting a single organ (e.g., 
eyes). Typically, these are inherent within the maternally inherited 
mitochondrial DNA and thus, not inherited from the nucleus. The 
impacted severity and organs/tissues of these deletions/duplication are 
dependent of heteroplasmy of that particular tissue. Mitochondrial DNA 
deletions and duplications can also be acquired if there are abnormalities 
in the mitochondrial DNA maintenance machinery (inherited through the 
nucleus). 

(Broomfield et al. 2015; Poulton, 
Deadman, and Gardiner 1989) 

Pyruvate Dehydrogenase 
Enzymology 

The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the 
rate-limiting step in aerobic glucose oxidation and is thus integral to 
cellular energetics. Pyruvate dehydrogenase (PDH) deficiency is an 
inherited disorder of carbohydrate metabolism. PDH deficiency is due to 
loss-of-function mutation in one of the five component enzymes, most 
commonly E1α-subunit. The common clinical presentation ranges from 
fatal infantile lactic acidosis in newborns to chronic neurological 
dysfunction. Historically, pyruvate dehydrogenase specific activity is 
typically determined by measuring the decarboxylation of 1-14C-pyruvate 
to 14CO2 and was expressed as a unit of 14CO2 production per tissue 

(Cameron, Levandovskiy, Mackay, 
Tein, et al. 2004; Schwab et al. 
2005) 
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mass per unit of time. A number of colorimetric kits are available for 
assay such that one micromole of NADH production is equal to one unit 
of PDH activity. 

Thymidine Phosphorylase 
Enzymology 

Enzyme assay to confirm or establish diagnosis of mitochondrial 
neurogastrointestinal encephalomyopathy (MNGIE) which presents with 
gastrointestinal dysmotility, peripheral neuropathy, myopathy and 
leukoencephalopathy. Thymidine phosphorylase is important for 
pyrimidine pathway metabolism of thymidine. Assays available include 
colorimetric and HPLC. 

(Lara et al. 2007; Valentino et al. 
2007) 

Lymphoblasts (EBV Transformed) 

ATP Synthesis  (Van Bergen et al. 2014) 

High Resolution 
Respirometry 

Live cellular respiration (Complexes I-V) allows measurement of 
parameters such as mitochondrial membrane potential, reserve 
capacity for ATP generation, and Complex I-IV substrate utilization. 
This testing assesses functional characteristics of intact mitochondria 
within living tissues. 

(Van Bergen et al. 2014) 

Seahorse Live Cell Metabolic 
Analysis 

As noted above (see Seahorse Live Cell Metabolic Analysis in 
Fibroblast section), Seahorse respirometry can provide a functional 
assessment of ETC function on intact cells, permeabilized cells or 
isolated mitochondria. Circulating cells including platelets and 
leukocytes can be obtained with a blood draw and are amenable to 
short-term cryopreservation. Studies in animal models and humans 
have shown inconsistent correlation between respiratory parameters in 
peripheral cells with skeletal muscle. Application to patient samples 
has demonstrated clinical utility though noted that there was significant 
variability among patients.  

(Acin-Perez et al. 2021; Pecina et al. 
2014) 

Muscle Biochemistry 

ATP Synthesis Measures the amount of ATP produced by ATP synthesis which are 
typically decreased in almost all mitochondrial diseases. 
Bioluminescence assay kits are available to measure ATP production in 
cell suspensions or whole muscle preparations. This can also be 
assayed using MRS.  

(Fiedler et al. 2016)  

Blue Native Gel 
Electrophoresis 
(OXPHOS) 

Clear native electrophoresis and blue native electrophoresis are 
microscale techniques for the isolation of membrane protein complexes. 
Proteins are visualized in blue native gels with Coomassie Blue G-250 
dye. Blue native PAGE retains enzyme complexes in their intact and 
enzymatically active form. Both the amount of the fully assembled 
complex, and the presence of any smaller stalled assembly 
intermediates, can then be determined. 

(Calvaruso, Smeitink, and Nijtmans 
2008; Carrozzo et al. 2006; Andringa, 
King, and Bailey 2009; Assouline et 
al. 2012; Gerards et al. 2010; 
Pitceathly et al. 2011; Tuppen et al. 
2012) 

Coenzyme Q10 Coenzyme Q10 deficiency can be detected by decreased levels. 
Common assay approaches as described in the Fibroblast section  

(DiMauro, Quinzii, and Hirano 2007; 
López et al. 2006) 

Glutathione Content Glutathione (GSH) is the main non-protein thiol in cells. GSH functions (Hargreaves et al. 2005) 
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are dependent on the redox-active thiol of its cysteine moiety that serves 
as a cofactor for a number of antioxidant and detoxifying enzymes. While 
synthesized exclusively in the cytosol from its constituent amino acids, 
GSH is distributed in different compartments, including mitochondria 
where its concentration in the matrix equals that of the cytosol. 
Glutathione decreases in mitochondrial disease. 

High Resolution 
Respirometry 

Live cellular respiration (Complexes I-V) allows measurement of 
parameters such as mitochondrial membrane potential, reserve capacity 
for ATP generation, and Complex I-IV substrate utilization. This testing 
assesses functional characteristics of intact mitochondria within living 
tissues. 

 

mtDNA Copy Number Defects in mitochondrial copy number are frequently indications of 
abnormal mitochondrial DNA maintenance. The mutations causing this 
depletion are frequently encoded by nuclear genes which encode genes 
essential to replication of mitochondrial DNA, mitochondrial nucleotide 
pool, mitochondrial nucleotide import, and mitochondrial dynamics. 

 

mtDNA Deletion/Duplication Mitochondrial DNA deletion and duplication abnormalities are typically 
evaluated using sequencing techniques. These can range from multi-
systemic disorders to disorders of only impacting a single organ (e.g., 
eyes). Typically, these are inherent within the maternally inherited 
mitochondrial DNA and thus, not inherited from the nucleus. The 
impacted severity and organs/tissues of these deletions/duplication are 
dependent of heteroplasmy of that particular tissue. Sometimes the 
deletions can be acquired over time impacting heteroplasmy as well. 
Mitochondrial DNA deletions and duplications can also be acquired if 
there are abnormalities in the mitochondrial DNA maintenance 
machinery (inherited through the nucleus). 

 

OXPHOS Enzymology OXPHOS enzymology assesses mitochondrial function by determining 
maximal enzymatic activity of the individual electron transport system 
(ETS) complexes in disrupted mitochondria by spectrophotometry. 
However, many aspects of mitochondrial function that occur in live cells 
cannot be assessed by OXPHOS enzymology. 

(van den Heuvel, Smeitink, and 
Rodenburg 2004) 

Pyruvate Dehydrogenase 
Enzymology 

The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the 
rate-limiting step in aerobic glucose oxidation and is thus integral to 
cellular energetics. Pyruvate dehydrogenase (PDH) deficiency is an 
inherited disorder of carbohydrate metabolism. PDH deficiency is due to 
loss-of-function mutation in one of the five component enzymes, most 
commonly E1α-subunit. The common clinical presentation ranges from 
fatal infantile lactic acidosis in newborns to chronic neurological 
dysfunction. Pyruvate dehydrogenase specific activity is typically 
determined by measuring the decarboxylation of 1-14C-pyruvate to 
14CO2 and was expressed as a unit of 14 CO2 production per tissue 

(Schwab et al. 2005; Adeva et al. 
2013) 
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mass per unit of time. 

Seahorse Live Cell Metabolic 
Analysis 

Muscle biopsies have been the gold standard for respirometry 
measurements (see above: Fibroblast section). The high mitochondrial 
content and energy demand of muscle makes this tissue a clinically 
valuable sample to assess ETC function and for some time has been the 
gold standard. However, obtaining muscle samples is invasive and 
requires specialized apparatus and expertise.  

(Gnaiger 2009; Pesta and Gnaiger 
2012; Acin-Perez et al. 2021) 

Muscle Histology 

Combined SDH + COX COX deficiency, increased SDH (MELAS) (Ross 2011; Hedberg-Oldfors et al. 
2022; Murgia et al. 2019) 

Cytochrome C Oxidase 
(COX) (Complex IV) 

Complex IV (COX deficiency) (Filosto et al. 2007; Murphy et al. 
2012; Hedberg-Oldfors et al. 2022) 

Gomori Trichrome Ragged red fibers (Filosto et al. 2007; Shelly et al. 
2021; Schnitzler et al. 2017; Pant et 
al. 2015) 

Nicotinamide Adenine 
Dinucleotide Tetrazolium 
Reductase (NADH-TR) 

 (Pant et al. 2015; Ravara et al. 2015) 

Succinate Dehydrogenase 
(SDH) 

Complex II (Filosto et al. 2007; Murgia et al. 
2019; Pant et al. 2015) 

Genetics 

Exome Sequencing (NGS) 
(nDNA) 

Nuclear DNA exome sequencing. While most testing is only nDNA, some 
NGS approaches may include mtDNA. 

(Ashraf et al. 2013; Boczonadi and 
Horvath 2014; DaRe et al. 2013; 
Davit-Spraul et al. 2014; Falk et al. 
2012; Farhan et al. 2014; Girotto et 
al. 2013; Haack et al. 2014; Hong et 
al. 2013; Lieber et al. 2014; Logan et 
al. 2014; McMillan et al. 2014; 
Monies et al. 2014; Morino et al. 
2014; Nakajima et al. 2014; Ohtake 
et al. 2014; Platt, Cox, and Enns 
2014; Poduri et al. 2013; Prasad et 
al. 2014; Rosenthal et al. 2013; 
Soreze et al. 2013; Spiegel et al. 
2014; Tucci et al. 2014; Saisawat et 
al. 2014; Carroll, Brilhante, and 
Suomalainen 2014; Bonnen et al. 
2013; Craigen et al. 2013; DiMauro et 
al. 2013; Gai et al. 2013; Haddad et 
al. 2013; Hildick-Smith et al. 2013; 
Imagawa et al. 2014; Neveling et al. 
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2013; Persico and Napolioni 2013; 
Pitceathly, Rahman, et al. 2013; 
Pitceathly, Taanman, et al. 2013; 
Proverbio et al. 2013; Sarig et al. 
2013; Tran-Viet et al. 2013; Auranen 
et al. 2013; Dinwiddie et al. 2013; 
Edvardson et al. 2013; Gerards et al. 
2013; Gonzalez et al. 2013; 
Jonckheere et al. 2013; Kennerson et 
al. 2013; Kevelam et al. 2013; Lee et 
al. 2012; Lieber et al. 2013; Marina et 
al. 2013; Miyake et al. 2013; Nota et 
al. 2013; Prasad et al. 2013; 
Sambuughin et al. 2013; Berger et al. 
2011; Calvo et al. 2012; Casey et al. 
2012; Dündar et al. 2012; Elo et al. 
2012; Eschenbacher et al. 2012; 
Garone et al. 2012; Glazov et al. 
2011; Götz et al. 2011; Haack et al. 
2012; Haack et al. 2013; Horvath et 
al. 2012; Janer et al. 2012; Keogh 
and Chinnery 2013; Lamperti et al. 
2012; Li, Zou, and Brown 2012; 
Lieber et al. 2012; Lindberg et al. 
2013; Marti-Masso et al. 2012; 
McCormick, Place, and Falk 2013; 
Pierson et al. 2011; Rinaldi et al. 
2012; Sailer and Houlden 2012; 
Shamseldin et al. 2012; Siriwardena 
et al. 2013; Spiegel et al. 2012; 
Steenweg et al. 2012; Sundaram et 
al. 2011; Takata et al. 2011; 
Tyynismaa et al. 2012; Zhao et al. 
2012; Barretta et al. 2023; Deen et al. 
2023) 

Whole Genome Sequencing Whole genome NGS to include mtDNA in most test paradigms.  (Davis et al. 2022; Schon et al. 2021) 

Gene Sequencing Panel Mitochondrial nuclear gene panel sequencing; does not include mtDNA (Bariş, Kırık, and Balasar 2023) 

RNA Analysis RNA sequence analysis of mitochondrial expressed genes to identify 
variants and their differential expression  

(Yépez et al. 2022; Kuznetsova et al. 
2017) 

Mitochondrial Gene 
Expression Profiling 

Measuring changes in mitochondrial gene expression in tissue or cells (Crimi et al. 2005; He et al. 2013; 
Herrmann and Herrmann 2012; 
Yatsuga et al. 2015; Zhang et al. 
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2013; Zhang and Falk 2014) 

Mitochondrial 
Haplotype/Haplogroup 

Evolutionarily related haplotype groups and phenotypic characteristics (Hagen et al. 2013; Ridge et al. 2013; 
Shen-Gunther et al. 2023) 

mtDNA Copy Number 
(Leukocytes, Liver, Muscle) 

mtDNA depletion and mtDNA increases (de Mendoza et al. 2004; Liu et al. 
2006; El-Hattab, Craigen, and 
Scaglia 2017) 

mtDNA Deletion/Duplication 
(Leukocytes, Liver, Muscle) 

mtDNA deletion disorders; somatic mutations (Bai and Wong 2005; El-Hattab, 
Craigen, and Scaglia 2017; 
Arbeithuber et al. 2020) 

mtDNA Sequencing Sequence analysis of mtDNA to identify variants and define heteroplasmy 
and homoplasmy 

(Macken et al. 2023; Wang et al. 
2022; Dames, Eilbeck, and Mao 
2015) 
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