BIOMARKER WORKING GROUP GUIDELINES

MITOCHONDRIAL DISEASE BIOMARKERS EXERCISE TESTING		
CYCLE ERGOMETRY	The characterization of exercise intolerance in mitochondrial disease is performed using cycle ergometry with measurements of VO2, VCO2, Respiratory exchange ratio (RER = VCO2/VO2), heart rate, minute ventilation, rating of perceived exertion, and cardiac output. Exercise protocols to maximum or for a given time period at a set workload can differentiate mitochondrial disease from controls with a sensitivity of approximately 0.63 - 0.75 and a specificity of 0.70 - 0.90 .	[1-6]
BLOOD (SERUM / PLASMA)		
LACTATE	LACTATE, THE PRODUCT OF ANAEROBIC GLUCOSE METABOLISM, ACCUMULATES WHEN AEROBIC METABOLISM IS IMPAIRED, WHICH CAUSES A SHIFT IN THE OXIDIZED-TO-REDUCED NAD_/ NADH RATIO WITHIN MITOCHONDRIA (IE, DECREASE IN THE OXIDIZED NICOTINAMIDE-ADENINE DINUCLEOTIDE/REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE "REDOX" RATIO).NORMAL LACTATE DOES NOT EXCLUDE A MITOCHONDRIAL DISEASE, AND INCREASES IN LACTATE ARE NOT SPECIFIC TO THESE DISEASES. CAREFUL COLLECTION IS IMPORTANT SINCE A VARIETY OF DIFFICULTIES WITH COLLECTION INCLUDING PROLONGED TOURNIQUET USE AND STRUGGLING DURING BLOOD DRAW CAN ELEVATE LEVELS. SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 5% AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 15% AND 83%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 15% AND 83%, RESPECTIVELY AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 15% AND 83%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 89% AND 59% RESPECTIVELY.	[7-10]
PYRUVATE	INCREASES IN PYRUVATE SIGNALS DYSFUNCTION OF THE CELLULAR OXIDATIVE PROCESS. NORMAL PYRUVATE DOES NOT EXCLUDE A MITOCHONDRIAL DISEASE, AND INCREASE IN PYRUVATE ARE NOT SPECIFIC TO THESE DISEASES. CAREFUL COLLECTION IS IMPORTANT SINCE A VARIETY OF DIFFICULTIES WITH COLLECTION INCLUDING PROLONGED TOURNIQUET USE AND STRUGGLING DURING BLOOD DRAW CAN ELEVATE LEVELS. SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 40% AND 83%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 42% AND 81% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 34% AND 83%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 62% AND 61% RESPECTIVELY.	[7-10]
LACTATE / PYRUVATE RATIO	THE BLOOD LACTATE-TO-PYRUVATE (L:P) RATIO REFLECTS THE EQUILIBRIUM BETWEEN PRODUCT AND SUBSTRATE OF THE REACTION CATALYZED BY LACTATE DEHYDROGENASE. THE L:P RATIO IS CORRELATED WITH THE CYTOPLASMIC NADH:NAD* RATIO AND IS USED AS A MARKER OF THE REDOX STATE. WITH IMPAIRMENT OF CELLULAR RESPIRATION, PYRUVATE OXIDATION IS REDUCED, RESULTING IN AN INCREASE IN THE L:P RATIO. IN PYRUVATE DEHYDROGENASE DEFICIENCY (PDH DEFICIENTY), THE METABOLIC BLOCK IS UPSTREAM OF THE RESPIRATORY CHAIN. THE L:P RATIO IS NORMAL OR LOW. AN INCREASED L:P RATIO (>25) SUGGESTS PRIMARY OR SECONDARY RESPIRATORY CHAIN DYSFUNCTION. A RATIO <25 MAY INDICATE A PDH DEFECT IN THE APPROPRIATE CLINICAL SETTING. SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 5% AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 11% AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY. 11% AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY. 11%	[7-10]
AMINO ACIDS (EMPHASIS ON ALANINE, ALANI LYSINE RATIO, ALANINE / PHENYLALANINE +	MITOCHONDRIAL DISEASES. ELEVATED PLASMA ALANINE LEVELS, WHEN PRESENT, MAY BE	[7-9, 11]
LYSINE RATIO, CITRULLINE) CARNITINE LEVELS	A USEFUL INDICATOR OF LONG-STANDING PYRUVATE ACCUMULATION. CARNITINE PLAYS AN ESSENTIAL ROLE IN THE TRANSLOCATION OF LONG-CHAIN FATTY- ACIDS INTO THE MITOCHONDRIAL MATRIX FOR SUBSEQUENT BETA-OXIDATION, AND HAS A VITAL ROLE IN THE REGULATION OF BOTH FAT AND CARBOHYDRATE MUSCLE METABOLISM. FREE CARNITINE TENDS TO BE LOWER THAN NORMAL IN BLOOD OF PATIENTS WITH ETC DEFECTS, WHEREAS ESTERIFIED CARNITINE TENDS TO BE INCREASED. MEDICATIONS AND TOXINS CAN ALSO SIGNIFICANTLY AFFECT MITOCHONDRIAL FUNCTION SUCH AS VALPROATE WHICH CAN PRODUCE CARNITINE DEFICIENCY.	[7, 9]

ACYLCARNITINES	CARNITINE PLAYS AN ESSENTIAL ROLE IN THE TRANSFER OF LONG-CHAIN FATTY ACIDS INTO	[7-9,
	THE MITOCHONDRIA FOR BETA-OXIDATION. CARNITINE BINDS ACYL RESIDUES TO ENHANCE ELIMINATION. THIS MECHANISM IS ESSENTIAL IN REMOVING ABNORMAL ORGANIC ACIDS IN SEVERAL ORGANIC ACIDEMIAS AND OFTEN CAUSES SECONDARY CARNITINE DEFICIENCIES. SECONDARY CARNITINE DEFICIENCIES CAN OCCUR IN MITOCHONDRIAL DISEASES.	12]
СРК	CREATINE KINASE ACTIVITY IS GREATEST IN STRIATED MUSCLE, HEART TISSUE, AND BRAIN. THE DETERMINATION OF CK ACTIVITY IS A COMMONLY USED ASSAY IN THE INVESTIGATION OF SKELETAL MUSCLE DISEASE. PATIENTS WITH MITOCHONDRIAL DISEASE CAN HAVE INCREASES IN CPK OR EVEN EPISODES OF RHABDOMYOLYSIS. SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 35% AND 97%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 78% AND 83% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 22% AND 97%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 78% AND 83% RESPECTIVELY.	[7, 8, 10]
CREATINE	THE CONCENTRATION OF CREATINE IS LINKED TO THE CONCENTRATION OF PHOSPHOCREATINE (PCR) THROUGH THE CR KINASE REACTION, WHOSE KINETICS ARE INFLUENCED BY THE BALANCE BETWEEN MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION ACTIVITY AND ATP DEMAND. ELEVATION OF PLASMA CREATINE IN RCD PATIENTS SIGNALS A LOW ENERGETIC STATE OF TISSUES USING THE PHOSPHOCREATINE SHUTTLE.	[13]
FREE GLUTATHIONE (FGSH), OXIDIZED DISULFIDE (GSSG), FGSH/GSSG RATIO	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. FREE GSH/GSSG RATIO IS AN INDICATOR OF REDOX METABOLISM (OXIDATIVE STRESS MARKER). GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[11, 14, 15]
PLASMA CARBONYL CONTENT	PROTEIN CARBONYLS ARE PRIMARILY PRODUCED AS A RESULT OF ROS MEDIATED PROTEIN DAMAGE AND MAY ALSO BE CAUSED BY REACTIVE ALDEHYDE INTERMEDIATES OF ORGANIC ACIDS. PROTEIN CARBONYLS ARE MARKERS FOR OXIDATIVE PROTEIN DAMAGE. INCREASES CAN BE OBSERVED IN MITOCHONDRIAL DISEASES.	[11]
FIBROBLAST GROWTH FACTOR 21 (FGF21)	MITOCHONDRIAL DISEASES PRODUCE A TRANSCRIPTIONAL RESPONSE MIMICKING STARVATION WHICH INCLUDES INCREASED EXPRESSION OF THE METABOLIC REGULATOR FGF21. SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 35% AND 95%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 70% AND 83% RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 66% AND 95%, RESPECTIVELY. NEGATIVE AND POSITIVE PREDICTIVE VALUES ARE ESTIMATED AT APPROXIMATELY 92% AND 78% RESPECTIVELY. FGF-21 IS KNOWN TO BE INCREASED IN A WIDE RANGE OF METABOLIC DISORDERS SUCH AS DIABETES, OBESITY, AND THE METABOLIC SYNDROME.	[10, 16- 23]
GROWTH DIFFERENTIATION FACTOR – 15 (GDF- 15)	GROWTH DIFFERENTIATION FACTOR 15 (GDF-15), A MEMBER OF THE TRANSFORMING GROWTH FACTOR BETA SUPERFAMILY, HAS BEEN PROPOSED AS A USEFUL BIOMARKER FOR MITOCHONDRIAL DISORDERS. SENSITIVITY AND SPECIFICITY FOR DISEASE CONTROL IS ESTIMATED TO BE 98% (VS. 77% IN FGF-21) AND 52% (VS. 79% IN FGF-21), RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE 98% (VS. 77% IN FGF-21) AND 86% (VS. 86% IN FGF-21) 7. GDF-15 IS KNOWN TO BE INCREASED IN CARDIAC FAILURE, RENAL INSUFFICIENCY AND PROSTATE CANCER.	[172- 173]
Metabolic profiling	METABOLIC PROFILING PROVIDES INFORMATION ON CONSUMPTION AND SECRETION OF METABOLIC INTERMEDIATES. THIS METHOD ASSESSES A WIDE BIOCHEMICAL SPECTRUM INCLUDING AMINO ACIDS, ORGANIC ACIDS, NUCLEOTIDES, AND SUGARS, ENABLING SIMULTANEOUS MONITORING OF MULTIPLE METABOLIC PATHWAYS. METABOLIC PROFILING IS PERFORMED BY LC-MS/MS IN CULTURE MEDIA. PLASMA MEASUREMENTS OF MITOCHONDRIAL DYSFUNCTION; CORRELATES WITH EXTRACELLULAR METABOLIC PROFILE IN MYOTUBES (SEE BELOW).	[13]
HEPATIC ENZYMES (AST, ALT, GGT)	ASPARTATE AMINOTRANSFERASE (AST) IS FOUND IN HIGH CONCENTRATIONS IN LIVER, HEART, SKELETAL MUSCLE AND KIDNEY. AST IS PRESENT IN BOTH CYTOPLASM AND MITOCHONDRIA OF CELLS. ALANINE AMINOTRANSFERASE (ALT) IS PRESENT PRIMARILY IN LIVER CELLS. IN VIRAL HEPATITIS AND OTHER FORMS OF LIVER DISEASE ASSOCIATED WITH HEPATIC NECROSIS, SERUM ALT IS ELEVATED EVEN BEFORE THE CLINICAL SIGNS AND	[8]

	SYMPTOMS OF THE DISEASE APPEAR. GAMMA-GLUTAMYLTRANSFERASE (GGT) IS PRIMARILY PRESENT IN KIDNEY, LIVER, AND PANCREATIC CELLS. SOME MITOCHONDRIAL DISEASES HAVE HEPATIC INVOLVEMENT THAT CAN BE MILD TO SEVERE. IN SOME PATIENTS	
Ammonia	HEPATIC FAILURE OCCURS (E.G ÅLPER DISEASE). HYPERAMMONEMIA CAN OCCUR WHEN THERE IS IMPAIRED CAPACITY OF THE BODY TO EXCRETE NITROGENOUS WASTE. AMMONIA IS ELEVATED IN THE FOLLOWING CONDITIONS: LIVER DISEASE, URINARY TRACT INFECTION WITH DISTENTION AND STASIS, REYE SYNDROME, INBORN ERRORS OF METABOLISM INCLUDING DEFICIENCY OF ENZYMES IN THE UREA CYCLE, HHH SYNDROME (HYPERAMMONEMIA-HOMOCITRULLINURIA, HYPERORNITHINEMIA), SOME NORMAL NEONATES (USUALLY RETURNING TO NORMAL IN 48 HOURS), TOTAL PARENTERAL NUTRITION, URETEROSIGMOIDOSTOMY, AND SODIUM VALPROATE THERAPY. SOME MITOCHONDRIAL DISEASES HAVE HEPATIC INVOLVEMENT THAT CAN BE MILD TO SEVERE. IN SOME PATIENTS HEPATIC FAILURE OCCURS (E.G ÅLPER DISEASE).	[8]
Thymidine	A GROUP OF MITOCHONDRIAL DISEASES ARE CAUSED BY MUTATIONS IN GENES THAT ENCODE PROTEINS THAT MAINTAIN THE MITOCHONDRIAL DNTP POOL. THESE MUTATIONS CAUSE AN ACCUMULATION OF THYMIDINE AND DEOXYURIDINE, LEADING TO AN IMBALANCE OF CYTOSOLIC DNTP POOLS. BECAUSE THE MITOCHONDRIAL DNTP POOL RELIES, IN PART, ON DNTP IMPORTED FROM THE CYTOSOL, AN IMBALANCED CYTOSOLIC DNTP POOL CAN LEAD TO AN IMBALANCED MITOCHONDRIAL DNTP POOL THAT CAN IMPAIR MTDNA SYNTHESIS.	[24, 25]
DEOXYURIDINE	A GROUP OF MITOCHONDRIAL DISEASES ARE CAUSED BY MUTATIONS IN GENES THAT ENCODE PROTEINS THAT MAINTAIN THE MITOCHONDRIAL DNTP POOL. THESE MUTATIONS CAUSE AN ACCUMULATION OF THYMIDINE AND DEOXYURIDINE, LEADING TO AN IMBALANCE OF CYTOSOLIC DNTP POOLS. BECAUSE THE MITOCHONDRIAL DNTP POOL RELIES, IN PART, ON DNTP IMPORTED FROM THE CYTOSOL, AN IMBALANCED CYTOSOLIC DNTP POOL CAN LEAD TO AN IMBALANCED MITOCHONDRIAL DNTP POOL THAT CAN IMPAIR MTDNA SYNTHESIS.	[24, 25]
Urine		
ORGANIC ACIDS	URINE ORGANIC ACID TESTING IS USEFUL IN THE DIAGNOSIS AND MONITORING OF PATIENTS WITH INBORN ERRORS OF ORGANIC ACID METABOLISM, INBORN ERRORS OF AMINO ACID METABOLISM, UREA CYCLE DEFECTS, AND DEFECTS OF THE MITOCHONDRIAL RESPIRATORY CHAIN. ORGANIC ACID ANALYSIS MAY FAIL TO DETECT CERTAIN DISORDERS THAT ARE CHARACTERIZED BY MINIMAL OR INTERMITTENT METABOLITE EXCRETION. METABOLIC CHANGES OBSERVED IN MITOCHONDRIAL DISEASES INCLUDE INCREASED LEVELS OF TCA INTERMEDIATES, LACTATE, PYRUVATE, 3-METHYLGLUTACONIC ACID).	[7, 8, 26]
3-METHYLGLUTACONIC ACID	THE BRANCHED-CHAIN ORGANIC ACID 3-METHYLGLUTACONIC ACID (3-MGA) IS AN INTERMEDIATE OF THE MITOCHONDRIAL LEUCINE CATABOLISM. HOWEVER, IN MITOCHONDRIAL DISEASES, 3-MGA IS A BIOCHEMICAL MARKER FOR MITOCHONDRIAL DYSFUNCTION OF STILL UNKNOWN ORIGIN.	[27, 28]
Amino acids	ELEVATED ALANINE, GLYCINE, PROLINE, SARCOSINE, OR TYROSINE CAN BE OBSERVED IN MITOCHONDRIAL DISEASES. ELEVATED PLASMA ALANINE LEVELS, WHEN PRESENT, MAY BE A USEFUL INDICATOR OF LONG-STANDING PYRUVATE ACCUMULATION. URINE AMINO ACIDS MAY ALSO DETECT PROXIMAL RENAL TUBULE DYSFUNCTION LEADING TO A GENERALIZED AMINOACIDURIA.	[7, 8]
CSF	LACTATE CONCENTRATIONS IN CSF RESULT FROM A COMPLEX BALANCE BETWEEN EFFLUX AND INFLUX THROUGH THE BLOOD-BRAIN BARRIER AND THROUGH THE PLASMA MEMBRANE OF CENTRAL NERVOUS SYSTEM CELLS. CSF LACTATE CONCENTRATIONS WERE MORE SENSITIVE FOR MITOCHONDRIAL DISORDERS THAN ARE BLOOD LACTATE CONCENTRATIONS. LACTATE IS INCREASED WITH OXIDATIVE PHOSPHORYLATION DEFECTS. BOTH PYRUVATE AND LACTATE CONCENTRATIONS ARE INCREASED IN PDH DEFICIENCY, BUT THE L/P RATIO REMAINS NORMAL OR ONLY SLIGHTLY DECREASED. LACTATE IS REPORTED TO HAVE A SENSITIVITY OF 73%, SPECIFICITY OF 97%, POSITIVE PREDICTIVE VALUE OF 65% AND NEGATIVE PREDICTIVE VALUE OF 93%. EVEN WHEN PLASMA LEVELS OF LACTATE AND PYRUVATE ARE NORMAL, CEREBROSPINAL FLUID (CSF) LACTATE LEVELS MAY BE ELEVATED IN PATIENTS WITH MITOCHONDRIAL DISEASE WHO HAVE PREDOMINANT BRAIN MANIFESTATIONS.	[7, 8] [29]
PYRUVATE	PYRUVIC ACID, AN INTERMEDIATE METABOLITE, PLAYS AN IMPORTANT ROLE IN LINKING CARBOHYDRATE AND AMINO ACID METABOLISM TO THE TRICARBOXYLIC ACID CYCLE, THE FATTY ACID BETA-OXIDATION PATHWAY, AND THE MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX.PYRUVATE IS REPORTED TO HAVE A SENSITIVITY OF 42%, SPECIFICITY OF 97%,	[7, 8] [29]

	POSITIVE PREDICTIVE VALUE OF 79% AND NEGATIVE PREDICTIVE VALUE OF 96%. EVEN WHEN PLASMA LEVELS OF LACTATE AND PYRUVATE ARE NORMAL, CEREBROSPINAL FLUID (CSF) LACTATE LEVELS MAY BE ELEVATED IN PATIENTS WITH MITOCHONDRIAL DISEASE	
LATATE / PYRUVATE RATIO	WHO HAVE PREDOMINANT BRAIN MANIFESTATIONS. THE CSF LACTATE-TO-PYRUVATE (L:P) RATIO REFLECTS THE EQUILIBRIUM BETWEEN PRODUCT AND SUBSTRATE OF THE REACTION CATALYZED BY LACTATE DEHYDROGENASE. THE L:P RATIO IS CORRELATED WITH THE CYTOPLASMIC NADH:NAD* RATIO AND IS USED AS A MARKER OF THE REDOX STATE. WITH IMPAIRMENT OF CELLULAR RESPIRATION, PYRUVATE OXIDATION IS REDUCED AND LACTATE IS INCREASED, RESULTING IN AN INCREASE IN THE L:P RATIO. IN PYRUVATE DEHYDROGENASE DEFICIENCY (PDH DEFICIENTY), THE METABOLIC BLOCK IS UPSTREAM OF THE RESPIRATORY CHAIN. BOTH PYRUVATE AND LACTATE CONCENTRATIONS ARE INCREASED IN PDH DEFICIENCY, BUT THE L/P RATIO REMAINS NORMAL OR ONLY SLIGHTLY DECREASED. AN INCREASED L:P RATIO (>25) SUGGESTS PRIMARY OR SECONDARY RESPIRATORY CHAIN DYSFUNCTION. A RATIO <25 MAY INDICATE A PDH DEFECT IN THE APPROPRIATE CLINICAL SETTING. THE LACTATE/PYRUVATE RATIO IS REPORTED TO HAVE A SENSITIVITY OF 31%, SPECIFICITY OF 97%, POSITIVE PREDICTIVE VALUE OF 62% AND NEGATIVE PREDICTIVE VALUE OF 91%. EVEN WHEN PLASMA LEVELS OF LACTATE AND PYRUVATE ARE NORMAL, CEREBROSPINAL FLUID (CSF) LACTATE LEVELS MAY BE ELEVATED IN PATIENTS WITH MITOCHONDRIAL DISEASE WHO HAVE PREDOMINANT BRAIN MANIFESTATIONS.	[29]
Amino acids (alanine, alanine / lysine ratio, alanine / phenylalanine + lysine ratio)	ELEVATED ALANINE, GLYCINE, PROLINE, SARCOSINE, OR TYROSINE CAN BE OBSERVED IN MITOCHONDRIAL DISEASES. ELEVATED PLASMA ALANINE LEVELS, WHEN PRESENT, MAY BE A USEFUL INDICATOR OF LONG-STANDING PYRUVATE ACCUMULATION.	[7, 8]
Cell count	Cell count can be helpful in assessing then metabolic parameters by Assessing for increases in red blood cells due to traumatic spinal tap.	[8]
PROTEIN	CEREBROSPINAL FLUID (CSF) IS SECRETED BY THE CHOROID PLEXUSES, AROUND THE CEREBRAL VESSELS, AND ALONG THE WALLS OF THE VENTRICLES OF THE BRAIN. CSF TURNOVER IS RAPID, EXCHANGING ABOUT FOUR TIMES PER DAY. MORE THAN 80% OF CSF PROTEIN CONTENT ORIGINATES FROM PLASMA BY ULTRAFILTRATION THROUGH THE WALLS OF CAPILLARIES IN THE MENINGES AND CHOROID PLEXUSES; THE REMAINDER ORIGINATES FROM INTRATHECAL SYNTHESIS. INCREASES ARE OBSERVED IN SOME DISORDERS SUCH AS LEIGH DISEASE, ALPER SYNDROME, AND KEARNS-SAYRE SYDROME.	[8]
GLUCOSE (WITH SIMULTANEOUS BLOOD GLUCOSE)	CSF GLUCOSE LEVELS MAY BE DECREASED DUE TO CONSUMPTION BY MICROORGANISMS, IMPAIRED GLUCOSE TRANSPORT, OR INCREASED GLYCOLYSIS. CSF GLUCOSE IS NORMAL IN MOST MITOCHONDRIAL DISEASES. GLUT1 DEFICIENCY SYNDROME IS A TREATABLE NEUROMETABOLIC DISORDER, CHARACTERIZED BY A LOW CONCENTRATION OF GLUCOSE IN CEREBROSPINAL FLUID (CSF) AND A DECREASED CSF TO BLOOD GLUCOSE RATIO. THIS DECREASE IN CSF GLUCOSE LIMITS ATP GENERATION BY CELLULAR ENERGETICS.	[8, 30]
GROWTH DIFFERENTIATION FACTOR – 15 (GDF- 15)	GROWTH DIFFERENTIATION FACTOR 15 (GDF-15), A MEMBER OF THE TRANSFORMING GROWTH FACTOR BETA SUPERFAMILY, HAS BEEN PROPOSED AS A USEFUL BIOMARKER FOR MITOCHONDRIAL DISORDERS. IT IS ALSO EXCRETED IN THE CSF WHICH IS REFLECTED BY THE SERUM LEVEL IN MITOCHONDRIAL DISORDERS. SENSITIVITY AND SPECIFICITY FOR DISEASE CONTROL IS ESTIMATED TO BE 98% AND 52%, RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE 98% AND 86%. GDF-15 IS KNOWN TO BE INCREASED IN CARDIAC FAILURE, RENAL INSUFFICIENCY, AND PROSTATE CANCER.	[172- 173]
FIBROBLASTS HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS	[31, 32]
	SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	[0.,02]
OXPHOS ENZYMOLOGY	OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED BY OXPHOS ENZYMOLOGY.	[32]
LACTATE /PYRUVATE RATIO	THE FIBROBLAST LACTATE-TO-PYRUVATE (L:P) RATIO REFLECTS THE EQUILIBRIUM BETWEEN PRODUCT AND SUBSTRATE OF THE REACTION CATALYZED BY LACTATE DEHYDROGENASE. THE L:P RATIO IS CORRELATED WITH THE CYTOPLASMIC NADH:NAD ⁺ RATIO AND IS USED AS A MARKER OF THE REDOX STATE. WITH IMPAIRMENT OF CELLULAR RESPIRATION, PYRUVATE OXIDATION IS REDUCED AND LACTATE IS INCREASED, RESULTING	[31]

	IN AN INCREASE IN THE L:P RATIO. IN PYRUVATE DEHYDROGENASE DEFICIENCY (PDH DEFICIENTY), THE METABOLIC BLOCK IS UPSTREAM OF THE RESPIRATORY CHAIN. BOTH PYRUVATE AND LACTATE CONCENTRATIONS ARE INCREASED IN PDH DEFICIENCY, BUT THE L/P RATIO REMAINS NORMAL OR ONLY SLIGHTLY DECREASED.	
PYRUVATE DEHYDROGENASE ENZYMOLOGY	THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE- LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1A-SUBUNIT. THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1- ¹⁴ C-PYRUVATE TO ¹⁴ CO ₂ AND WAS EXPRESSED AS A UNIT OF ¹⁴ CO ₂ PRODUCTION PER TISSUE MASS PER UNIT OF TIME.	[33, 34]
PYRUVATE DEHYDROGENASE SUBUNIT WESTERN BLOT	WESTERN BLOTTING OF DENATURED SUBUNITS OF PYRUVATE DEHYDROGENASE ALLOW RECOGNITION OF PYRUVATE DEHYDROGENASE DEFICIENCIES WHEN A SUBUNIT IS DECREASED, MISSING OR OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS MORE AMENABLE TO PROTEIN QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO CONFIRM MOLECULAR IDENTITY OF THE TARGET PROTEIN BY MOLECULAR WEIGHT.	[35]
Pyruvate dehydrogenase immunohistochemistry	IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS CAN BE DETECTED.	[35]
ATP SYNTHESIS		[36]
FIBROBLAST OXPHOS SUBUNIT IMMUNOHISTOCHEMISTRY	IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS CAN BE DETECTED.	[37]
OXPHOS SUBUNIT WESTERN BLOT	WESTERN BLOTTING OF DENATURED SELECTED SUBUNITS OF OXPHOS ENZYMES ALLOWS RECOGNITION OF DEFECTS CAUSING A SUBUNIT TO BE DECREASED, MISSING OR OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS MORE AMENABLE TO PROTEIN QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO CONFIRM MOLECULAR IDENTITY OF THE TARGET PROTEIN BY MOLECULAR WEIGHT.	
BLUE NATIVE GEL ELECTROPHORESIS (OXPHOS)	CLEAR NATIVE ELECTROPHORESIS AND BLUE NATIVE ELECTROPHORESIS ARE MICROSCALE TECHNIQUES FOR THE ISOLATION OF MEMBRANE PROTEIN COMPLEXES. PROTEINS ARE VISUALIZED IN BLUE NATIVE GELS WITH COOMASSIE BLUE G-250 DYE. BLUE NATIVE- PAGE RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED.	[38, 39]
CLEAR NATIVE GEL OXPHOS IMMUNOBLOT	CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED BY IMMUNOBLOTTING USING ONE OR MORE SUBUNIT ANTIBODIES.	[39]
CLEAR NATIVE GEL OXPHOS ENZYMOLOGY	CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED BY ASSESSING THE ENZYME ACTIVITY OF EACH OXPHOS ENZYME.	[39]
COENZYME Q10	COENZYME Q10 DEFICIENCY	[40-43]
LEUKOCYTES INTRACELLULAR FREE GLUTATHIONE (FGSH), OXIDIZED DISULFIDE (GSSG), FGSH/GSSG RATIO	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. FREE GSH/GSSG RATIO IS AN INDICATOR OF REDOX METABOLISM (OXIDATIVE STRESS MARKER). GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[11]
INTRACELLULAR COENZYME Q10		[44]

PYRUVATE DEHYDROGENASE ENZYMOLOGY	The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the rate- limiting step in the aerobic glucose oxidation and is thus integral to cellular energetics. Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism. PDH deficiency is due to loss-of-function mutation in one of the five component enzymes, most commonly E1a-subunit. The common clinical presentation ranges from fatal infantile lactic acidosis in newborns to chronic neurological dysfunction. Pyruvate dehydrogenase specific activity is typically determined by measuring the decarboxylation of 1- 14 C-pyruvate to 14 CO ₂ and was expressed as a unit of 14 CO ₂ production per tissue mass per unit of time.	
THYMIDINE PHOSPHORYLASE ENZYMOLOGY COENZYME Q10 LEVEL	COENZYME Q10 DEFICIENCY	[24, 25] [45]
NEUTROPHILS		[]
OXPHOS ENZYMOLOGY	OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED BY OXPHOS ENZYMOLOGY.	[46]
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	[46]
COENZYME Q10	COENZYME Q10 DEFICIENCY	[46]
INTRACELLULAR GLUTATHIONE	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[11]
		54.43
INTRACELLULAR FREE GLUTATHIONE (FGSH), OXIDIZED DISULFIDE (GSSG), FGSH/GSSG RATIO	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. FREE GSH/GSSG RATIO IS AN INDICATOR OF REDOX METABOLISM (OXIDATIVE STRESS MARKER). GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[11]
PYRUVATE DEHYDROGENASE ENZYMOLOGY	The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the rate- limiting step in the aerobic glucose oxidation and is thus integral to cellular energetics. Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism. PDH deficiency is due to loss-of-function mutation in one of the five component enzymes, most commonly E1a-subunit. The common clinical presentation ranges from fatal infantile lactic acidosis in newborns to chronic neurological dysfunction. Pyruvate dehydrogenase specific activity is typically determined by measuring the decarboxylation of 1- 14 C-pyruvate to 14 CO ₂ and was expressed as a unit of 14 CO ₂ production per tissue mass per unit of time.	
THYMIDINE PHOSPHORYLASE ENZYMOLOGY		[24, 25]
OXPHOS ENZYMOLOGY	OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED BY OXPHOS ENZYMOLOGY.	[46]
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	[46]
COENZYME Q10	INHERITED COENZYME Q10 DEFICIENCY IS A POTENTIALLY TREATABLE MITOCHONDRIAL DISEASE. COENZYME Q10 LEVELS IN SKELETAL MUSCLE CORRELATE BETTER WITH	[44-46]

	MONOCYTE COQ10 LEVELS THAN PLASMA COQ10 LEVELS.	
INTRACELLULAR GLUTATHIONE PLATELETS (HIGH OXPHOS)	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[11]
OXPHOS ENZYMOLOGY	OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL	[46]
	ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED BY OXPHOS ENZYMOLOGY.	
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	[46, 47]
COENZYME Q10	COENZYME Q10 DEFICIENCY	[46]
PERIPHERAL-TYPE BENZODIAZEPINE RECEPTOR	KINETIC BINDING PARAMETERS OF PBR ARE ALTERED IN MITOCHONDRIAL DISEASE	[48]
BINDING KINETICS		
LYMPHOCYTES (HIGHEST OXPHOS)		[46]
OXPHOS ENZYMOLOGY	OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED BY OXPHOS ENZYMOLOGY.	[46]
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS	[46]
	SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	
COENZYME Q10	COENZYME Q10 DEFICIENCY	[46]
INTRACELLULAR GLUTATHIONE	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[11]
DNA STRAND BREAKS BY COMET ASSAY	SINGLE CELL GEL ELECTROPHORESIS WHICH ESTIMATES LEVELS OF PRIMARY AND	[49, 50]
(CULTURED CELLS)	OXIDATIVE DNA DAMAGE	• • •
MICRONUCLEUS ASSAY FOLLOWED BY FLUORESCENCE IN SITU HYBRIDISATION	CHROMOSOME DAMAGE IN PERIPHERAL BLOOD LYMPHOCYTES IN MITOCHONDRIAL DISEASE; CYTOKINESIS BLOCK MICRONUCLEUS METHOD IN CULTURED PERIPHERAL BLOOD LYMPHOCYTES, COUPLED WITH FLUORESCENCE IN SITU HYBRIDIZATION ANALYSIS USING A DIGOXIGENIN-LABELLED PANCENTROMERIC DNA PROBE	[50, 51]
Pyruvate dehydrogenase	The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the rate- limiting step in the aerobic glucose oxidation and is thus integral to cellular energetics. Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism. PDH deficiency is due to loss-of-function mutation in one of the five component enzymes, most commonly E1a-subunit. The common clinical presentation ranges from fatal infantile lactic acidosis in newborns to chronic neurological dysfunction. Pyruvate dehydrogenase specific activity is typically determined by measuring the decarboxylation of 1- 14C-pyruvate to 14CO ₂ and was expressed as a unit of 14CO ₂ production per tissue mass per unit of time.	[52, 53]
LYMPHOBLASTS (EBV TRANSFORMED)		15.43
		[54]
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	[54]

MUSCLE BIOCHEMISTRY		
OXPHOS ENZYMOLOGY	OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED BY OXPHOS ENZYMOLOGY.	[32]
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	
	MTDNA DEPLETION	
MTDNA DELETION/DUPLICATION PYRUVATE DEHYDROGENASE ENZYMOLOGY	MTDNA DELETION DISORDERS; SOMATIC MUTATIONS THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE- LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1A-SUBUNIT. THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1- ¹⁴ C-PYRUVATE TO ¹⁴ CO ₂ AND WAS EXPRESSED AS A UNIT OF ¹⁴ CO ₂ PRODUCTION PER TISSUE MASS PER UNIT OF TIME.	[34, 55]
PYRUVATE DEHYDROGENASE SUBUNIT WESTERN BLOT	WESTERN BLOTTING OF DENATURED SUBUNITS OF PYRUVATE DEHYDROGENASE ALLOW RECOGNITION OF PYRUVATE DEHYDROGENASE DEFICIENCIES WHEN A SUBUNIT IS DECREASED, MISSING OR OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS MORE AMENABLE TO PROTEIN QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO CONFIRM MOLECULAR IDENTITY OF THE TARGET PROTEIN BY MOLECULAR WEIGHT.	[35]
COENZYME Q10	COENZYME Q10 DEFICIENCY	[40, 41]
GLUTATHIONE	GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. GLUTATHIONE DECREASES IN MITOCHONDRIAL DISEASE.	[56]
OXPHOS SUBUNIT WESTERN BLOT	WESTERN BLOTTING OF DENATURED SELECTED SUBUNITS OF OXPHOS ENZYMES ALLOWS RECOGNITION OF DEFECTS CAUSING A SUBUNIT TO BE DECREASED, MISSING OR OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS MORE AMENABLE TO PROTEIN QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO CONFIRM MOLECULAR IDENTITY OF THE TARGET PROTEIN BY MOLECULAR WEIGHT.	[57]
BLUE NATIVE GEL ELECTROPHORESIS (OXPHOS)	CLEAR NATIVE ELECTROPHORESIS AND BLUE NATIVE ELECTROPHORESIS ARE MICROSCALE TECHNIQUES FOR THE ISOLATION OF MEMBRANE PROTEIN COMPLEXES. PROTEINS ARE VISUALIZED IN BLUE NATIVE GELS WITH COOMASSIE BLUE G-250 DYE. BLUE NATIVE- PAGE RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED.	[38, 39, 58-62]
CLEAR NATIVE GEL OXPHOS IMMUNOBLOT	CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED BY IMMUNOBLOTTING USING ONE OR MORE SUBUNIT ANTIBODIES.	[39, 63]
CLEAR NATIVE GEL OXPHOS ENZYMOLOGY	CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED BY ASSESSING THE ENZYME ACTIVITY OF EACH OXPHOS ENZYME.	[39, 64- 67]
HUMAN MITOCHONDRIAL TRANSCRIPTION FACTOR A (HMTTFA OR TFAM)	INVOLVED IN THE CONTROL OF REPLICATION AND TRANSCRIPTION OF MTDNA; H-MTTFA LEVELS ARE SIGNIFICANTLY INVERSELY RELATED TO BLOOD LACTATE AND THE PERCENT OF RRF, COX DEFICIENT FIBERS	[68]
MITOCHONDRIAL DNA ABSENCE SENSITIVE FACTOR) (MIDAS)	EXPRESSION WAS ENHANCED BY THE ABSENCE OF MITOCHONDRIAL DNA	[69]
BIOGENESIS REGULATOR PEROXISOME	DRAMATICALLY INDUCE BOTH NUCLEAR AND MITOCHONDRIAL GENE EXPRESSION;	[70]

PROLIFERATOR-ACTIVATED RECEPTOR-GAMMA COACTIVATOR-1ALPHA (PGC-1ALPHA)	INCREASED IN MITOCHONDRIAL DISEASE	
8-OXOGUANINE DNA GLYCOLASE-1 (OGG-1)	OXIDATIVE-INDUCED LESIONS TO MTDNA CAN BE REPAIRED BY THE DNA REPAIR ENZYME 8-OXOGUANINE DNA GLYCOLASE-1; INCREASED IN MITOCHONDRIAL DISEASE	[70]
MANGANESE SUPEROXIDE DISMUTASE (MNSOD)	ROS ARE DETOXIFIED BY ANTIOXIDANT ENZYMES WITHIN THE MITOCHONDRION, SUCH AS MANGANESE SUPEROXIDE DISMUTASE (MNSOD); INCREASED IN MITOCHONDRIAL DISEASE	[70]
AIF	APOPTOTIC PROTEIN; ROS PROMOTE THE RELEASE OF APOPTOSIS-INDUCING FACTOR (AIF) AND CYTOCHROME C BY INDUCING MITOCHONDRIAL PERMEABILITY TRANSITION PORE (MTPTP) OPENING; INCREASED IN MITOCHONDRIAL DISEASE	[70]
Bcl-2	APOPTOTIC PROTEIN; ROS PROMOTE THE RELEASE OF APOPTOSIS-INDUCING FACTOR (AIF) AND CYTOCHROME C BY INDUCING MITOCHONDRIAL PERMEABILITY TRANSITION PORE (MTPTP) OPENING. THE CONFORMATION OF THE MTPTP IS REGULATED BY THE BCL-2 FAMILY OF PROTEINS CONSISTING OF BOTH PRO- (I.E., BAX) AND ANTIAPOPTOTIC MEMBERS (I.E., BCL-2) IN THE OUTER MEMBRANE OF THE MITOCHONDRION; INCREASED IN MITOCHONDRIAL DISEASE	[70]
ACONITASE ENZYMOLOGY	TCA CYCLE ENZYME, DECREASED IN MITOCHONDRIAL DISEASE	[70]
MUSCLE HISTOLOGY		
GOMORI TRICHROME	RAGGED RED FIBERS	[71]
SUCCINATE DEHYDROGENASE (SDH)	COMPLEX II	[71]
CYCTOCHROME C OXIDASE (COX) (COMPLEX IV)	COMPLEX IV (COX DEFICIENCY)	[71]
COMBINED SDH + COX	COX DEFICIENCY, INCREASED SDH (MELAS)	[72]
FIBROBLAST GROWTH FACTOR 21 (FGF21)	MITOCHONDRIAL DISEASES PRODUCE A TRANSCRIPTIONAL RESPONSE MIMICKING STARVATION WHICH INCLUDES INCREASED EXPRESSION OF THE METABOLIC REGULATOR FGF21	[10, 21, 23]
OXPHOS SUBUNIT IMMUNOHISTOCHEMISTRY	IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS CAN BE DETECTED.	[71, 73]
HUMANIN IMMUNOHISTOCHEMISTRY	HUMANIN IS AN ENDOGENOUS PEPTIDE THAT INCREASES CELLULAR ATP. IT IS INCREASED IN RAGGED RED/COX DEFICIENT FIBERS. IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS CAN BE DETECTED.	[74]
Муотивеѕ		
METABOLIC PROFILING	LC-MS/MS in culture media. Extracellular metabolic profile of mitochondrial dysfunction; correlates with plasma measurements.	[13]
HIGH RESOLUTION RESPIROMETRY	LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF PARAMETERS SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.	[13]
GENETIC		-
CELLULAR ENERGETICS GENE SEQUENCING (NGS) (NDNA + MTDNA)	EXON + EXON/INTRON BOUNDARY SEQUENCING OF GENES RELATED TO CELLULAR ENERGETICS FUNCTION	[75-77]
MTDNA SEQUENCING EXOME SEQUENCING (NGS) (NDNA)		[75, 78- 162]
MTDNA DELETION/DUPLICATION (LEUKOCYTES)	MTDNA DELETION DISORDERS; SOMATIC MUTATIONS	[163]
MTDNA DELETION/DUPLICATION (MUSCLE)	MTDNA DELETION DISORDERS; SOMATIC MUTATIONS	[163]
MTDNA COPY NUMBER (LEUKOCYTES)	MTDNA DEPLETION AND MTDNA INCREASES	[164, 165]
MTDNA COPY NUMBER (MUSCLE)	MTDNA DEPLETION AND MTDNA INCREASES	[163]
MITOCHONDRIAL HAPLOTYPE	EVOLUTIONARILY RELATED HAPLOTYPE GROUPS AND PHENOTYPIC CHARACTERISTICS	[166, 167]
MITOCHONDRIAL GENE EXPRESSION PROFILING		[168- 171]

- 1. TAIVASSALO, T., ET AL., THE SPECTRUM OF EXERCISE TOLERANCE IN MITOCHONDRIAL MYOPATHIES: A STUDY OF 40 PATIENTS. BRAIN, 2003. 126(PT 2): P. 413-23.
- 2. SICILIANO, G., ET AL., *EFFECTS OF AEROBIC TRAINING ON LACTATE AND CATECHOLAMINERGIC EXERCISE RESPONSES IN MITOCHONDRIAL MYOPATHIES.* NEUROMUSCUL DISORD, 2000. 10(1): P. 40-5.
- 3. TAIVASSALO, T., ET AL., *EFFECTS OF AEROBIC TRAINING IN PATIENTS WITH MITOCHONDRIAL MYOPATHIES.* NEUROLOGY, 1998. 50(4): p. 1055-60.
- 4. TAIVASSALO, T., ET AL., COMBINED AEROBIC TRAINING AND DICHLOROACETATE IMPROVE EXERCISE CAPACITY AND INDICES OF AEROBIC METABOLISM IN MUSCLE CYTOCHROME OXIDASE DEFICIENCY. NEUROLOGY, 1996. 47(2): P. 529-34.
- 5. TARNOPOLSKY, M.A. AND S. RAHA, *MITOCHONDRIAL MYOPATHIES: DIAGNOSIS, EXERCISE INTOLERANCE, AND TREATMENT OPTIONS.* MED SCI SPORTS EXERC, 2005. 37(12): p. 2086-93.
- 6. TARNOPOLSKY, M., EXERCISE TESTING AS A DIAGNOSTIC ENTITY IN MITOCHONDRIAL MYOPATHIES. MITOCHONDRION, 2004. 4(5-6): p. 529-42.
- 7. SUOMALAINEN, A., BIOMARKERS FOR MITOCHONDRIAL RESPIRATORY CHAIN DISORDERS. J INHERIT METAB DIS, 2011. 34(2): P. 277-82.
- 8. HAAS, R.H., ET AL., *MITOCHONDRIAL DISEASE: A PRACTICAL APPROACH FOR PRIMARY CARE PHYSICIANS.* PEDIATRICS, 2007. 120(6): p. 1326-33.
- 9. MANCUSO, M., ET AL., *Diagnostic approach to mitochondrial disorders: the need for a reliable biomarker*. Curr Mol Med, 2009. 9(9): p. 1095-107.
- 10. DAVIS, R.L., ET AL., FIBROBLAST GROWTH FACTOR 21 IS A SENSITIVE BIOMARKER OF MITOCHONDRIAL DISEASE. NEUROLOGY, 2013. 81(21): P. 1819-26.
- 11. ATKURI, K.R., ET AL., INHERITED DISORDERS AFFECTING MITOCHONDRIAL FUNCTION ARE ASSOCIATED WITH GLUTATHIONE DEFICIENCY AND HYPOCITRULLINEMIA. PROC NATL ACAD SCI U S A, 2009. 106(10): P. 3941-5.
- 12. LONGO, N., C. AMAT DI SAN FILIPPO, AND M. PASQUALI, DISORDERS OF CARNITINE TRANSPORT AND THE CARNITINE CYCLE. AM J MED GENET C SEMIN MED GENET, 2006. 142C(2): P. 77-85.
- 13. SHAHAM, O., ET AL., A PLASMA SIGNATURE OF HUMAN MITOCHONDRIAL DISEASE REVEALED THROUGH METABOLIC PROFILING OF SPENT MEDIA FROM CULTURED MUSCLE CELLS. PROC NATL ACAD SCI U S A, 2010. 107(4): p. 1571-5.
- 14. FRYE, R.E., ET AL., *REDOX METABOLISM ABNORMALITIES IN AUTISTIC CHILDREN ASSOCIATED WITH MITOCHONDRIAL DISEASE*. TRANSL PSYCHIATRY, 2013. 3: P. E273.
- 15. RIBAS, V., C. GARCIA-RUIZ, AND J.C. FERNANDEZ-CHECA, GLUTATHIONE AND MITOCHONDRIA. FRONT PHARMACOL, 2014. 5: P. 151.
- 16. CHAU, M.D., ET AL., FIBROBLAST GROWTH FACTOR 21 REGULATES ENERGY METABOLISM BY ACTIVATING THE AMPK-SIRT1-PGC-1ALPHA PATHWAY. PROC NATL ACAD SCI U S A, 2010. 107(28): P. 12553-8.
- 17. GAVRILOVA, R. AND R. HORVATH, FIBROBLAST GROWTH FACTOR 21, A BIOMARKER FOR MITOCHONDRIAL MUSCLE DISEASE. NEUROLOGY, 2013. 81(21): P. 1808-9.
- 18. LIANG, C., K. AHMAD, AND C.M. SUE, THE BROADENING SPECTRUM OF MITOCHONDRIAL DISEASE: SHIFTS IN THE DIAGNOSTIC PARADIGM. BIOCHIM BIOPHYS ACTA, 2014. 1840(4): p. 1360-1367.
- 19. SU, S.L., ET AL., FGF21 IN ATAXIA PATIENTS WITH SPINOCEREBELLAR ATROPHY AND MITOCHONDRIAL DISEASE. CLIN CHIM ACTA, 2012. 414: P. 225-7.
- 20. SUOMALAINEN, A., FIBROBLAST GROWTH FACTOR 21: A NOVEL BIOMARKER FOR HUMAN MUSCLE-MANIFESTING MITOCHONDRIAL DISORDERS. EXPERT OPIN MED DIAGN, 2013. 7(4): P. 313-7.
- 21. SUOMALAINEN, A., ET AL., FGF-21 AS A BIOMARKER FOR MUSCLE-MANIFESTING MITOCHONDRIAL RESPIRATORY CHAIN DEFICIENCIES: A DIAGNOSTIC STUDY. LANCET NEUROL, 2011. 10(9): p. 806-18.
- 22. TURNBULL, D., A NEW BIOMARKER FOR MITOCHONDRIAL DISEASE. LANCET NEUROL, 2011. 10(9): P. 777-8.
- 23. TYYNISMAA, H., ET AL., *MITOCHONDRIAL MYOPATHY INDUCES A STARVATION-LIKE RESPONSE*. HUM MOL GENET, 2010. 19(20): P. 3948-58.
- 24. VALENTINO, M.L., ET AL., THYMIDINE AND DEOXYURIDINE ACCUMULATE IN TISSUES OF PATIENTS WITH MITOCHONDRIAL
- NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE). FEBS LETT, 2007. 581(18): p. 3410-4.
- 25. LARA, M.C., ET AL., MITOCHONDRIAL NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE): BIOCHEMICAL FEATURES AND THERAPEUTIC APPROACHES. BIOSCI REP, 2007. 27(1-3): P. 151-63.
- 26. BARSHOP, B.A., METABOLOMIC APPROACHES TO MITOCHONDRIAL DISEASE: CORRELATION OF URINE ORGANIC ACIDS. MITOCHONDRION, 2004. 4(5-6): P. 521-7.
- 27. WORTMANN, S., ET AL., ASSOCIATION OF 3-METHYLGLUTACONIC ACIDURIA WITH SENSORI-NEURAL DEAFNESS, ENCEPHALOPATHY, AND LEIGH-LIKE SYNDROME (MEGDEL ASSOCIATION) IN FOUR PATIENTS WITH A DISORDER OF THE OXIDATIVE PHOSPHORYLATION. MOL GENET METAB, 2006. 88(1): p. 47-52.
- 28. WORTMANN, S.B., ET AL., BIOCHEMICAL AND GENETIC ANALYSIS OF 3-METHYLGLUTACONIC ACIDURIA TYPE IV: A DIAGNOSTIC STRATEGY. BRAIN, 2009. 132(PT 1): P. 136-46.
- 29. BENOIST, J.F., ET AL., CEREBROSPINAL FLUID LACTATE AND PYRUVATE CONCENTRATIONS AND THEIR RATIO IN CHILDREN: AGE-RELATED REFERENCE INTERVALS. CLIN CHEM, 2003. 49(3): P. 487-94.
- 30. LEEN, W.G., ET AL., CEREBROSPINAL FLUID ANALYSIS IN THE WORKUP OF GLUT1 DEFICIENCY SYNDROME: A SYSTEMATIC REVIEW. JAMA NEUROL, 2013. 70(11): P. 1440-4.
- 31. CAMERON, J.M., ET AL., RESPIRATORY CHAIN ANALYSIS OF SKIN FIBROBLASTS IN MITOCHONDRIAL DISEASE. MITOCHONDRION, 2004. 4(5-6): P. 387-94.
- 32. VAN DEN HEUVEL, L.P., J.A. SMEITINK, AND R.J. RODENBURG, BIOCHEMICAL EXAMINATION OF FIBROBLASTS IN THE DIAGNOSIS AND RESEARCH OF OXIDATIVE PHOSPHORYLATION (OXPHOS) DEFECTS. MITOCHONDRION, 2004. 4(5-6): P. 395-401.
- 33. CAMERON, J.M., ET AL., DEFICIENCY OF PYRUVATE DEHYDROGENASE CAUSED BY NOVEL AND KNOWN MUTATIONS IN THE ETALPHA SUBUNIT. AM J MED GENET A, 2004. 131(1): P. 59-66.

- 34. SCHWAB, M.A., ET AL., OPTIMIZED SPECTROPHOTOMETRIC ASSAY FOR THE COMPLETELY ACTIVATED PYRUVATE DEHYDROGENASE COMPLEX IN FIBROBLASTS. CLIN CHEM, 2005. 51(1): P. 151-60.
- 35. CAPALDI, R.A., ET AL., IMMUNOLOGICAL APPROACHES TO THE CHARACTERIZATION AND DIAGNOSIS OF MITOCHONDRIAL DISEASE. MITOCHONDRION, 2004. 4(5-6): p. 417-26.
- 36. SHEPHERD, R.K., ET AL., MEASUREMENT OF ATP PRODUCTION IN MITOCHONDRIAL DISORDERS. J INHERIT METAB DIS, 2006. 29(1): P. 86-91.
- 37. DE PAEPE, B., ET AL., DIAGNOSTIC VALUE OF IMMUNOSTAINING IN CULTURED SKIN FIBROBLASTS FROM PATIENTS WITH OXIDATIVE PHOSPHORYLATION DEFECTS. PEDIATR RES, 2006. 59(1): p. 2-6.
- 38. CALVARUSO, M.A., J. SMEITINK, AND L. NIJTMANS, ELECTROPHORESIS TECHNIQUES TO INVESTIGATE DEFECTS IN OXIDATIVE PHOSPHORYLATION. METHODS, 2008. 46(4): P. 281-7.
- 39. CARROZZO, R., ET AL., SUBCOMPLEXES OF HUMAN ATP SYNTHASE MARK MITOCHONDRIAL BIOSYNTHESIS DISORDERS. ANN NEUROL, 2006. 59(2): P. 265-75.
- 40. DIMAURO, S., C.M. QUINZII, AND M. HIRANO, MUTATIONS IN COENZYME Q10 BIOSYNTHETIC GENES. J CLIN INVEST, 2007. 117(3): p. 587-9.
- 41. LOPEZ, L.C., ET AL., LEIGH SYNDROME WITH NEPHROPATHY AND COQ10 DEFICIENCY DUE TO DECAPRENYL DIPHOSPHATE SYNTHASE SUBUNIT 2 (PDSS2) MUTATIONS. AM J HUM GENET, 2006. 79(6): P. 1125-9.
- 42. MOLLET, J., ET AL., PRENYLDIPHOSPHATE SYNTHASE, SUBUNIT 1 (PDSS1) AND OH-BENZOATE POLYPRENYLTRANSFERASE (COQ2) MUTATIONS IN UBIQUINONE DEFICIENCY AND OXIDATIVE PHOSPHORYLATION DISORDERS. J CLIN INVEST, 2007. 117(3): P. 765-72.
- 43. QUINZII, C., ET AL., A MUTATION IN PARA-HYDROXYBENZOATE-POLYPRENYL TRANSFERASE (COQ2) CAUSES PRIMARY COENZYME Q10 DEFICIENCY. AM J HUM GENET, 2006. 78(2): P. 345-9.
- 44. CORDERO, M.D., ET AL., MITOCHONDRIAL DYSFUNCTION AND MITOPHAGY ACTIVATION IN BLOOD MONONUCLEAR CELLS OF FIBROMYALGIA PATIENTS: IMPLICATIONS IN THE PATHOGENESIS OF THE DISEASE. ARTHRITIS RES THER, 2010. 12(1): P. R17.
- 45. DUNCAN, A.J., ET AL., DETERMINATION OF COENZYME Q10 STATUS IN BLOOD MONONUCLEAR CELLS, SKELETAL MUSCLE, AND PLASMA BY HPLC with di-propoxy-coenzyme Q10 as an internal standard. CLIN CHEM, 2005. 51(12): P. 2380-2.
- 46. KRAMER, P.A., ET AL., A REVIEW OF THE MITOCHONDRIAL AND GLYCOLYTIC METABOLISM IN HUMAN PLATELETS AND LEUKOCYTES: IMPLICATIONS FOR THEIR USE AS BIOENERGETIC BIOMARKERS. REDOX BIOL, 2014. 2: P. 206-210.
- 47. HROUDOVA, J., ET AL., *MITOCHONDRIAL RESPIRATION IN BLOOD PLATELETS OF DEPRESSIVE PATIENTS*. MITOCHONDRION, 2013. 13(6): p. 795-800.
- 48. MARTINI, C., ET AL., PERIPHERAL BENZODIAZEPINE BINDING SITES IN PLATELETS OF PATIENTS AFFECTED BY MITOCHONDRIAL DISEASES AND LARGE SCALE MITOCHONDRIAL DNA REARRANGEMENTS. MOL MED, 2002. 8(12): P. 841-6.
- 49. TOMASETTI, M., ET AL., COENZYME Q10 ENRICHMENT DECREASES OXIDATIVE DNA DAMAGE IN HUMAN LYMPHOCYTES. FREE RADIC BIOL MED, 1999. 27(9-10): p. 1027-32.
- 50. MIGLIORE, L., ET AL., EVALUATION OF CYTOGENETIC AND DNA DAMAGE IN MITOCHONDRIAL DISEASE PATIENTS: EFFECTS OF COENZYME Q10 THERAPY. MUTAGENESIS, 2004. 19(1): P. 43-9.
- 51. NACCARATI, A., ET AL., CYTOGENETIC DAMAGE IN PERIPHERAL LYMPHOCYTES OF MITOCHONDRIAL DISEASE PATIENTS. NEUROL SCI, 2000. 21(5 SUPPL): P. S963-5.
- 52. VALLANCE, H.D., J.R. TOONE, AND D.A. APPLEGARTH, MEASUREMENT OF PYRUVATE DEHYDROGENASE COMPLEX (PDHC) IN INTERLEUKIN-2 (IL-2) STIMULATED LYMPHOCYTES. J INHERIT METAB DIS, 1994. 17(5): P. 627-8.
- 53. FOUQUE, F., ET AL., DIFFERENTIAL EFFECT OF DCA TREATMENT ON THE PYRUVATE DEHYDROGENASE COMPLEX IN PATIENTS WITH SEVERE PDHC DEFICIENCY. PEDIATR RES, 2003. 53(5): P. 793-9.
- 54. VAN BERGEN, N.J., ET AL., OXIDATIVE PHOSPHORYLATION MEASUREMENT IN CELL LINES AND TISSUES. MITOCHONDRION, 2014.
- 55. Adeva, M., et al., Enzymes involved in L-Lactate metabolism in humans. Mitochondrion, 2013. 13(6): p. 615-29.
- 56. HARGREAVES, I.P., ET AL., GLUTATHIONE DEFICIENCY IN PATIENTS WITH MITOCHONDRIAL DISEASE: IMPLICATIONS FOR PATHOGENESIS AND TREATMENT. J INHERIT METAB DIS, 2005. 28(1): p. 81-8.
- 57. COMI, G.P., ET AL., CYTOCHROME C OXIDASE SUBUNIT I MICRODELETION IN A PATIENT WITH MOTOR NEURON DISEASE. ANN NEUROL, 1998. 43(1): P. 110-6.
- 58. ANDRINGA, K., A. KING, AND S. BAILEY, BLUE NATIVE-GEL ELECTROPHORESIS PROTEOMICS. METHODS MOL BIOL, 2009. 519: p. 241-58.
- 59. TUPPEN, H.A., ET AL., MUTATIONS IN THE MITOCHONDRIAL TRNA SER(AGY) GENE ARE ASSOCIATED WITH DEAFNESS, RETINAL DEGENERATION, MYOPATHY AND EPILEPSY. EUR J HUM GENET, 2012. 20(8): P. 897-904.
- 60. ASSOULINE, Z., ET AL., A CONSTANT AND SIMILAR ASSEMBLY DEFECT OF MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX I ALLOWS RAPID IDENTIFICATION OF NDUFS4 MUTATIONS IN PATIENTS WITH LEIGH SYNDROME. BIOCHIM BIOPHYS ACTA, 2012. 1822(6): P. 1062-9.
- 61. PITCEATHLY, R.D., ET AL., KEARNS-SAYRE SYNDROME CAUSED BY DEFECTIVE R1/P53R2 ASSEMBLY. J MED GENET, 2011. 48(9): P. 610-7.
- 62. GERARDS, M., ET AL., DEFECTIVE COMPLEX I ASSEMBLY DUE TO C200RF7 MUTATIONS AS A NEW CAUSE OF LEIGH SYNDROME. J MED GENET, 2010. 47(8): P. 507-12.
- 63. WITTIG, I. AND H. SCHAGGER, FEATURES AND APPLICATIONS OF BLUE-NATIVE AND CLEAR-NATIVE ELECTROPHORESIS. PROTEOMICS, 2008. 8(19): p. 3974-90.
- 64. WITTIG, I. AND H. SCHAGGER, Advantages and limitations of clear-native PAGE. Proteomics, 2005. 5(17): p. 4338-46.
- 65. WUMAIER, Z., ET AL., CHAPTER 8 TWO-DIMENSIONAL NATIVE ELECTROPHORESIS FOR FLUORESCENT AND FUNCTIONAL ASSAYS OF MITOCHONDRIAL COMPLEXES. METHODS ENZYMOL, 2009. 456: P. 153-68.
- 66. WITTIG, I., ET AL., FUNCTIONAL ASSAYS IN HIGH-RESOLUTION CLEAR NATIVE GELS TO QUANTIFY MITOCHONDRIAL COMPLEXES IN HUMAN BIOPSIES AND CELL LINES. ELECTROPHORESIS, 2007. 28(21): P. 3811-20.
- 67. WITTIG, I., M. KARAS, AND H. SCHAGGER, HIGH RESOLUTION CLEAR NATIVE ELECTROPHORESIS FOR IN-GEL FUNCTIONAL ASSAYS AND FLUORESCENCE STUDIES OF MEMBRANE PROTEIN COMPLEXES. MOL CELL PROTEOMICS, 2007. 6(7): P. 1215-25.

- 68. SICILIANO, G., ET AL., ABNORMAL LEVELS OF HUMAN MITOCHONDRIAL TRANSCRIPTION FACTOR A IN SKELETAL MUSCLE IN MITOCHONDRIAL ENCEPHALOMYOPATHIES. NEUROL SCI, 2000. 21(5 SUPPL): P. S985-7.
- 69. NAKASHIMA-KAMIMURA, N., ET AL., MIDAS/GPP34, A NUCLEAR GENE PRODUCT, REGULATES TOTAL MITOCHONDRIAL MASS IN RESPONSE TO MITOCHONDRIAL DYSFUNCTION. J CELL SCI, 2005. 118(PT 22): P. 5357-67.
- 70. Additetty, P.J., et al., The effect of training on the expression of mitochondrial biogenesis- and apoptosis-related proteins in skeletal muscle of patients with mtDNA defects. Am J Physiol Endocrinol Metab, 2007. 293(3): p. E672-80.
- 71. FILOSTO, M., ET AL., NEUROPATHOLOGY OF MITOCHONDRIAL DISEASES. BIOSCI REP, 2007. 27(1-3): P. 23-30.
- 72. Ross, J.M., Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J Vis Exp, 2011(57): P. e3266.
- 73. DE PAEPE, B., ET AL., IMMUNOHISTOCHEMICAL ANALYSIS OF THE OXIDATIVE PHOSPHORYLATION COMPLEXES IN SKELETAL MUSCLE FROM PATIENTS WITH MITOCHONDRIAL DNA ENCODED TRNA GENE DEFECTS. J CLIN PATHOL, 2009. 62(2): P. 172-6.
- 74. KIN, T., ET AL., HUMANIN EXPRESSION IN SKELETAL MUSCLES OF PATIENTS WITH CHRONIC PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA. J HUM GENET, 2006. 51(6): P. 555-8.
- 75. DARE, J.T., ET AL., TARGETED EXOME SEQUENCING FOR MITOCHONDRIAL DISORDERS REVEALS HIGH GENETIC HETEROGENEITY. BMC MED GENET, 2013. 14: P. 118.
- 76. DAMES, S., ET AL., THE DEVELOPMENT OF NEXT-GENERATION SEQUENCING ASSAYS FOR THE MITOCHONDRIAL GENOME AND 108 NUCLEAR GENES ASSOCIATED WITH MITOCHONDRIAL DISORDERS. J MOL DIAGN, 2013. 15(4): P. 526-34.
- 77. AMSTUTZ, U., ET AL., SEQUENCE CAPTURE AND NEXT-GENERATION RESEQUENCING OF MULTIPLE TAGGED NUCLEIC ACID SAMPLES FOR MUTATION SCREENING OF UREA CYCLE DISORDERS. CLIN CHEM, 2011. 57(1): P. 102-11.
- 78. McMillan, H.J., et al., Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease. BMC Med Genet, 2014. 15(1): p. 36.
- 79. LIEBER, D.S., ET AL., NEXT GENERATION SEQUENCING WITH COPY NUMBER VARIANT DETECTION EXPANDS THE PHENOTYPIC SPECTRUM OF HSD17B4-DEFICIENCY. BMC MED GENET, 2014. 15(1): P. 30.
- 80. PRASAD, R., ET AL., THIOREDOXIN REDUCTASE 2 (TXNRD2) MUTATION ASSOCIATED WITH FAMILIAL GLUCOCORTICOID DEFICIENCY (FGD). J CLIN ENDOCRINOL METAB, 2014: P. JC20133844.
- 81. PODURI, A., ET AL., SLC25A22 IS A NOVEL GENE FOR MIGRATING PARTIAL SEIZURES IN INFANCY. ANN NEUROL, 2013. 74(6): P. 873-82.
- 82. FALK, M.J., ET AL., AGC1 DEFICIENCY CAUSES INFANTILE EPILEPSY, ABNORMAL MYELINATION, AND REDUCED N-ACETYLASPARTATE. JIMD REP, 2014.
- 83. FARHAN, S.M., ET AL., EXOME SEQUENCING IDENTIFIES NFS1 DEFICIENCY IN A NOVEL FE-S CLUSTER DISEASE, INFANTILE MITOCHONDRIAL COMPLEX II/III DEFICIENCY. MOL GENET GENOMIC MED, 2014. 2(1): P. 73-80.
- 84. OHTAKE, A., ET AL., DIAGNOSIS AND MOLECULAR BASIS OF MITOCHONDRIAL RESPIRATORY CHAIN DISORDERS: EXOME SEQUENCING FOR DISEASE GENE IDENTIFICATION. BIOCHIM BIOPHYS ACTA, 2014. 1840(4): P. 1355-9.
- 85. HAACK, T.B., ET AL., PHENOTYPIC SPECTRUM OF ELEVEN PATIENTS AND FIVE NOVEL MTFMT MUTATIONS IDENTIFIED BY EXOME SEQUENCING AND CANDIDATE GENE SCREENING. MOL GENET METAB, 2014. 111(3): P. 342-52.
- 86. MONIES, D.M., ET AL., CLINICAL AND PATHOLOGICAL HETEROGENEITY OF A CONGENITAL DISORDER OF GLYCOSYLATION MANIFESTING AS A MYASTHENIC/MYOPATHIC SYNDROME. NEUROMUSCUL DISORD, 2014. 24(4): P. 353-9.
- 87. NAKAJIMA, J., ET AL., A NOVEL HOMOZYGOUS YARS2 MUTATION CAUSES SEVERE MYOPATHY, LACTIC ACIDOSIS, AND SIDEROBLASTIC ANEMIA 2. J HUM GENET, 2014.
- 88. SPIEGEL, R., ET AL., DELINEATION OF C120RF65-RELATED PHENOTYPES: A GENOTYPE-PHENOTYPE RELATIONSHIP. EUR J HUM GENET, 2014.
- 89. BOCZONADI, V. AND R. HORVATH, *MITOCHONDRIA: IMPAIRED MITOCHONDRIAL TRANSLATION IN HUMAN DISEASE*. INT J BIOCHEM CELL BIOL, 2014. 48: p. 77-84.
- 90. PLATT, J., R. COX, AND G.M. ENNS, POINTS TO CONSIDER IN THE CLINICAL USE OF NGS PANELS FOR MITOCHONDRIAL DISEASE: AN ANALYSIS OF GENE INCLUSION AND CONSENT FORMS. J GENET COUNS, 2014.
- 91. MORINO, H., ET AL., EXOME SEQUENCING REVEALS A NOVEL TTC19 MUTATION IN AN AUTOSOMAL RECESSIVE SPINOCEREBELLAR ATAXIA PATIENT. BMC NEUROL, 2014. 14: P. 5.
- 92. SOREZE, Y., ET AL., MUTATIONS IN HUMAN LIPOYLTRANSFERASE GENE LIPT1 CAUSE A LEIGH DISEASE WITH SECONDARY DEFICIENCY FOR PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENASE. ORPHANET J RARE DIS, 2013. 8: P. 192.
- 93. LOGAN, C.V., ET AL., LOSS-OF-FUNCTION MUTATIONS IN MICU1 CAUSE A BRAIN AND MUSCLE DISORDER LINKED TO PRIMARY ALTERATIONS IN MITOCHONDRIAL CALCIUM SIGNALING. NAT GENET, 2014. 46(2): P. 188-93.
- 94. HONG, Y.B., ET AL., A COMPOUND HETEROZYGOUS MUTATION IN HADHB GENE CAUSES AN AXONAL CHARCOT-MARIE-TOOTH DISEASE. BMC MED GENET, 2013. 14: p. 125.
- 95. GIROTTO, G., ET AL., LINKAGE STUDY AND EXOME SEQUENCING IDENTIFY A BDP1 MUTATION ASSOCIATED WITH HEREDITARY HEARING LOSS. PLOS ONE, 2013. 8(12): P. E80323.
- 96. ASHRAF, S., ET AL., ADCK4 MUTATIONS PROMOTE STEROID-RESISTANT NEPHROTIC SYNDROME THROUGH COQ10 BIOSYNTHESIS DISRUPTION. J CLIN INVEST, 2013. 123(12): P. 5179-89.
- 97. ROSENTHAL, E.A., ET AL., JOINT LINKAGE AND ASSOCIATION ANALYSIS WITH EXOME SEQUENCE DATA IMPLICATES SLC25A40 IN HYPERTRIGLYCERIDEMIA. AM J HUM GENET, 2013. 93(6): P. 1035-45.
- 98. DAVIT-SPRAUL, A., ET AL., SECONDARY MITOCHONDRIAL RESPIRATORY CHAIN DEFECT CAN DELAY ACCURATE PFIC2 DIAGNOSIS. JIMD REP, 2013.
- 99. TUCCI, A., ET AL., NOVEL C120RF65 MUTATIONS IN PATIENTS WITH AXONAL NEUROPATHY AND OPTIC ATROPHY. J NEUROL NEUROSURG PSYCHIATRY, 2013.

- 100. SAISAWAT, P., ET AL., WHOLE-EXOME RESEQUENCING REVEALS RECESSIVE MUTATIONS IN TRAP1 IN INDIVIDUALS WITH CAKUT AND VACTERL ASSOCIATION. KIDNEY INT, 2013.
- 101. CARROLL, C.J., V. BRILHANTE, AND A. SUOMALAINEN, NEXT-GENERATION SEQUENCING FOR MITOCHONDRIAL DISORDERS. BR J PHARMACOL, 2014. 171(8): P. 1837-53.
- 102. NEVELING, K., ET AL., A POST-HOC COMPARISON OF THE UTILITY OF SANGER SEQUENCING AND EXOME SEQUENCING FOR THE DIAGNOSIS OF HETEROGENEOUS DISEASES. HUM MUTAT, 2013. 34(12): P. 1721-6.
- 103. HILDICK-SMITH, G.J., ET AL., MACROCYTIC ANEMIA AND MITOCHONDRIOPATHY RESULTING FROM A DEFECT IN SIDEROFLEXIN 4. AM J HUM GENET, 2013. 93(5): P. 906-14.
- 104. PITCEATHLY, R.D., ET AL., COX10 MUTATIONS RESULTING IN COMPLEX MULTISYSTEM MITOCHONDRIAL DISEASE THAT REMAINS STABLE INTO ADULTHOOD. JAMA NEUROL, 2013. 70(12): P. 1556-61.
- 105. IMAGAWA, E., ET AL., A HEMIZYGOUS GYG2 MUTATION AND LEIGH SYNDROME: A POSSIBLE LINK? HUM GENET, 2014. 133(2): P. 225-34.
- 106. GAI, X., ET AL., MUTATIONS IN FBXL4, ENCODING A MITOCHONDRIAL PROTEIN, CAUSE EARLY-ONSET MITOCHONDRIAL ENCEPHALOMYOPATHY. AM J HUM GENET, 2013. 93(3): P. 482-95.
- 107. BONNEN, P.E., ET AL., MUTATIONS IN FBXL4 CAUSE MITOCHONDRIAL ENCEPHALOPATHY AND A DISORDER OF MITOCHONDRIAL DNA MAINTENANCE. AM J HUM GENET, 2013. 93(3): p. 471-81.
- 108. CRAIGEN, W.J., ET AL., EXOME SEQUENCING OF A PATIENT WITH SUSPECTED MITOCHONDRIAL DISEASE REVEALS A LIKELY MULTIGENIC ETIOLOGY. BMC MED GENET, 2013. 14: P. 83.
- 109. SARIG, O., ET AL., INFANTILE MITOCHONDRIAL HEPATOPATHY IS A CARDINAL FEATURE OF MEGDEL SYNDROME (3-METHYLGLUTACONIC ACIDURIA TYPE IV WITH SENSORINEURAL DEAFNESS, ENCEPHALOPATHY AND LEIGH-LIKE SYNDROME) CAUSED BY NOVEL MUTATIONS IN SERAC1. AM J MED GENET A, 2013. 161(9): P. 2204-15.
- 110. PROVERBIO, M.C., ET AL., WHOLE GENOME SNP GENOTYPING AND EXOME SEQUENCING REVEAL NOVEL GENETIC VARIANTS AND PUTATIVE CAUSATIVE GENES IN CONGENITAL HYPERINSULINISM. PLOS ONE, 2013. 8(7): P. E68740.
- 111. DIMAURO, S., ET AL., THE CLINICAL MAZE OF MITOCHONDRIAL NEUROLOGY. NAT REV NEUROL, 2013. 9(8): P. 429-44.
- 112. PERSICO, A.M. AND V. NAPOLIONI, AUTISM GENETICS. BEHAV BRAIN RES, 2013. 251: p. 95-112.
- 113. PITCEATHLY, R.D., ET AL., NDUFA4 MUTATIONS UNDERLIE DYSFUNCTION OF A CYTOCHROME C OXIDASE SUBUNIT LINKED TO HUMAN NEUROLOGICAL DISEASE. CELL REP, 2013. 3(6): P. 1795-805.
- 114. HADDAD, D.M., ET AL., MUTATIONS IN THE INTELLECTUAL DISABILITY GENE UBE2A CAUSE NEURONAL DYSFUNCTION AND IMPAIR PARKIN-DEPENDENT MITOPHAGY. MOL CELL, 2013. 50(6): p. 831-43.
- 115. TRAN-VIET, K.N., ET AL., MUTATIONS IN SCO2 ARE ASSOCIATED WITH AUTOSOMAL-DOMINANT HIGH-GRADE MYOPIA. AM J HUM GENET, 2013. 92(5): P. 820-6.
- 116. DINWIDDIE, D.L., ET AL., DIAGNOSIS OF MITOCHONDRIAL DISORDERS BY CONCOMITANT NEXT-GENERATION SEQUENCING OF THE EXOME AND MITOCHONDRIAL GENOME. GENOMICS, 2013. 102(3): P. 148-56.
- 117. JONCKHEERE, A.I., ET AL., A COMPLEX V ATPSA1 DEFECT CAUSES FATAL NEONATAL MITOCHONDRIAL ENCEPHALOPATHY. BRAIN, 2013. 136(PT 5): P. 1544-54.
- 118. LIEBER, D.S., ET AL., TARGETED EXOME SEQUENCING OF SUSPECTED MITOCHONDRIAL DISORDERS. NEUROLOGY, 2013. 80(19): P. 1762-70.
- 119. NOTA, B., ET AL., DEFICIENCY IN SLC25A1, ENCODING THE MITOCHONDRIAL CITRATE CARRIER, CAUSES COMBINED D-2- AND L-2-HYDROXYGLUTARIC ACIDURIA. AM J HUM GENET, 2013. 92(4): P. 627-31.
- 120. GONZALEZ, M., ET AL., MUTATIONS IN PHOSPHOLIPASE DDHD2 CAUSE AUTOSOMAL RECESSIVE HEREDITARY SPASTIC PARAPLEGIA (SPG54). EUR J HUM GENET, 2013. 21(11): P. 1214-8.
- 121. KEVELAM, S.H., ET AL., EXOME SEQUENCING REVEALS MUTATED SLC19A3 IN PATIENTS WITH AN EARLY-INFANTILE, LETHAL ENCEPHALOPATHY. BRAIN, 2013. 136(PT 5): P. 1534-43.
- 122. AURANEN, M., ET AL., DOMINANT GDAP1 FOUNDER MUTATION IS A COMMON CAUSE OF AXONAL CHARCOT-MARIE-TOOTH DISEASE IN FINLAND. NEUROGENETICS, 2013. 14(2): P. 123-32.
- 123. MARINA, A.D., ET AL., NDUFS8-RELATED COMPLEX I DEFICIENCY EXTENDS PHENOTYPE FROM "PEO PLUS" TO LEIGH SYNDROME. JIMD REP, 2013. 10: P. 17-22.
- 124. GERARDS, M., ET AL., EXOME SEQUENCING REVEALS A NOVEL MOROCCAN FOUNDER MUTATION IN SLC19A3 AS A NEW CAUSE OF EARLY-CHILDHOOD FATAL LEIGH SYNDROME. BRAIN, 2013. 136(PT 3): P. 882-90.
- 125. Edvardson, S., et al., Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet, 2013. 50(4): p. 240-5.
- 126. PRASAD, C., ET AL., EXOME SEQUENCING REVEALS A HOMOZYGOUS MUTATION IN TWINKLE AS THE CAUSE OF MULTISYSTEMIC FAILURE INCLUDING RENAL TUBULOPATHY IN THREE SIBLINGS. MOL GENET METAB, 2013. 108(3): P. 190-4.
- 127. SAMBUUGHIN, N., ET AL., EXOME SEQUENCING REVEALS SCO2 MUTATIONS IN A FAMILY PRESENTED WITH FATAL INFANTILE HYPERTHERMIA. J HUM GENET, 2013. 58(4): P. 226-8.
- 128. KENNERSON, M.L., ET AL., A NEW LOCUS FOR X-LINKED DOMINANT CHARCOT-MARIE-TOOTH DISEASE (CMTX6) IS CAUSED BY MUTATIONS IN THE PYRUVATE DEHYDROGENASE KINASE ISOENZYME 3 (PDK3) GENE. HUM MOL GENET, 2013. 22(7): P. 1404-16.
- 129. MIYAKE, N., ET AL., MITOCHONDRIAL COMPLEX III DEFICIENCY CAUSED BY A HOMOZYGOUS UQCRC2 MUTATION PRESENTING WITH NEONATAL-ONSET RECURRENT METABOLIC DECOMPENSATION. HUM MUTAT, 2013. 34(3): P. 446-52.
- 130. LEE, H.J., ET AL., TWO NOVEL MUTATIONS OF GARS IN KOREAN FAMILIES WITH DISTAL HEREDITARY MOTOR NEUROPATHY TYPE V. J PERIPHER NERV SYST, 2012. 17(4): P. 418-21.
- 131. FALK, M.J., ET AL., MITOCHONDRIAL DISEASE GENETIC DIAGNOSTICS: OPTIMIZED WHOLE-EXOME ANALYSIS FOR ALL MITOCARTA NUCLEAR GENES AND THE MITOCHONDRIAL GENOME. DISCOV MED, 2012. 14(79): P. 389-99.

- 132. MCCORMICK, E., E. PLACE, AND M.J. FALK, MOLECULAR GENETIC TESTING FOR MITOCHONDRIAL DISEASE: FROM ONE GENERATION TO THE NEXT. NEUROTHERAPEUTICS, 2013. 10(2): p. 251-61.
- 133. SIRIWARDENA, K., ET AL., *MITOCHONDRIAL CITRATE SYNTHASE CRYSTALS: NOVEL FINDING IN SENGERS SYNDROME CAUSED BY ACYLGLYCEROL* KINASE (AGK) MUTATIONS. MOL GENET METAB, 2013. 108(1): p. 40-50.
- 134. LINDBERG, J., ET AL., THE MITOCHONDRIAL AND AUTOSOMAL MUTATION LANDSCAPES OF PROSTATE CANCER. EUR UROL, 2013. 63(4): p. 702-8.
- 135. RINALDI, C., ET AL., COWCHOCK SYNDROME IS ASSOCIATED WITH A MUTATION IN APOPTOSIS-INDUCING FACTOR. AM J HUM GENET, 2012. 91(6): p. 1095-102.
- 136. KEOGH, M.J. AND P.F. CHINNERY, NEXT GENERATION SEQUENCING FOR NEUROLOGICAL DISEASES: NEW HOPE OR NEW HYPE? CLIN NEUROL NEUROSURG, 2013. 115(7): P. 948-53.
- 137. JANER, A., ET AL., AN RMND1 MUTATION CAUSES ENCEPHALOPATHY ASSOCIATED WITH MULTIPLE OXIDATIVE PHOSPHORYLATION COMPLEX DEFICIENCIES AND A MITOCHONDRIAL TRANSLATION DEFECT. AM J HUM GENET, 2012. 91(4): P. 737-43.
- 138. LAMPERTI, C., ET AL., A NOVEL HOMOZYGOUS MUTATION IN SUCLA2 GENE IDENTIFIED BY EXOME SEQUENCING. MOL GENET METAB, 2012. 107(3): P. 403-8.
- 139. GARONE, C., ET AL., MPV17 MUTATIONS CAUSING ADULT-ONSET MULTISYSTEMIC DISORDER WITH MULTIPLE MITOCHONDRIAL DNA DELETIONS. ARCH NEUROL, 2012. 69(12): P. 1648-51.
- 140. ESCHENBACHER, W.H., ET AL., TWO RARE HUMAN MITOFUSIN 2 MUTATIONS ALTER MITOCHONDRIAL DYNAMICS AND INDUCE RETINAL AND CARDIAC PATHOLOGY IN DROSOPHILA. PLOS ONE, 2012. 7(9): P. E44296.
- 141. ELO, J.M., ET AL., *MITOCHONDRIAL PHENYLALANYL-TRNA SYNTHETASE MUTATIONS UNDERLIE FATAL INFANTILE ALPERS ENCEPHALOPATHY.* HUM MOL GENET, 2012. 21(20): P. 4521-9.
- 142. LI, X., H. ZOU, AND W.T. BROWN, GENES ASSOCIATED WITH AUTISM SPECTRUM DISORDER. BRAIN RES BULL, 2012. 88(6): P. 543-52.
- 143. ZHAO, Q., ET AL., RARE INBORN ERRORS ASSOCIATED WITH CHRONIC HEPATITIS B VIRUS INFECTION. HEPATOLOGY, 2012. 56(5): P. 1661-70.
- 144. CASEY, J.P., ET AL., *IDENTIFICATION OF A MUTATION IN LARS AS A NOVEL CAUSE OF INFANTILE HEPATOPATHY.* MOL GENET METAB, 2012. 106(3): P. 351-8.
- 145. HAACK, T.B., ET AL., HOMOZYGOUS MISSENSE MUTATION IN BOLA3 CAUSES MULTIPLE MITOCHONDRIAL DYSFUNCTIONS SYNDROME IN TWO SIBLINGS. J INHERIT METAB DIS, 2013. 36(1): P. 55-62.
- 146. SAILER, A. AND H. HOULDEN, RECENT ADVANCES IN THE GENETICS OF CEREBELLAR ATAXIAS. CURR NEUROL NEUROSCI REP, 2012. 12(3): P. 227-36.
- 147. HORVATH, R., ET AL., A NEW PHENOTYPE OF BRAIN IRON ACCUMULATION WITH DYSTONIA, OPTIC ATROPHY, AND PERIPHERAL NEUROPATHY. MOV DISORD, 2012. 27(6): P. 789-93.
- 148. HAACK, T.B., ET AL., MOLECULAR DIAGNOSIS IN MITOCHONDRIAL COMPLEX I DEFICIENCY USING EXOME SEQUENCING. J MED GENET, 2012. 49(4): p. 277-83.
- 149. SHAMSELDIN, H.E., ET AL., GENOMIC ANALYSIS OF MITOCHONDRIAL DISEASES IN A CONSANGUINEOUS POPULATION REVEALS NOVEL CANDIDATE DISEASE GENES. J MED GENET, 2012. 49(4): P. 234-41.
- 150. STEENWEG, M.E., ET AL., LEUKOENCEPHALOPATHY WITH THALAMUS AND BRAINSTEM INVOLVEMENT AND HIGH LACTATE 'LTBL' CAUSED BY EARS2 MUTATIONS. BRAIN, 2012. 135(PT 5): P. 1387-94.
- 151. SPIEGEL, R., ET AL., INFANTILE CEREBELLAR-RETINAL DEGENERATION ASSOCIATED WITH A MUTATION IN MITOCHONDRIAL ACONITASE, ACO2. AM J HUM GENET, 2012. 90(3): P. 518-23.
- 152. DUNDAR, H., ET AL., IDENTIFICATION OF A NOVEL TWINKLE MUTATION IN A FAMILY WITH INFANTILE ONSET SPINOCEREBELLAR ATAXIA BY WHOLE EXOME SEQUENCING. PEDIATR NEUROL, 2012. 46(3): P. 172-7.
- 153. CALVO, S.E., ET AL., MOLECULAR DIAGNOSIS OF INFANTILE MITOCHONDRIAL DISEASE WITH TARGETED NEXT-GENERATION SEQUENCING. SCI TRANSL MED, 2012. 4(118): p. 118ra10.
- 154. LIEBER, D.S., ET AL., ATYPICAL CASE OF WOLFRAM SYNDROME REVEALED THROUGH TARGETED EXOME SEQUENCING IN A PATIENT WITH SUSPECTED MITOCHONDRIAL DISEASE. BMC MED GENET, 2012. 13: P. 3.
- 155. PIERSON, T.M., ET AL., WHOLE-EXOME SEQUENCING IDENTIFIES HOMOZYGOUS AFG3L2 MUTATIONS IN A SPASTIC ATAXIA-NEUROPATHY SYNDROME LINKED TO MITOCHONDRIAL M-AAA PROTEASES. PLOS GENET, 2011. 7(10): P. E1002325.
- 156. BERGER, I., ET AL., EARLY PRENATAL VENTRICULOMEGALY DUE TO AN AIFM1 MUTATION IDENTIFIED BY LINKAGE ANALYSIS AND WHOLE EXOME SEQUENCING. MOL GENET METAB, 2011. 104(4): P. 517-20.
- 157. TAKATA, A., ET AL., EXOME SEQUENCING IDENTIFIES A NOVEL MISSENSE VARIANT IN RRM2B ASSOCIATED WITH AUTOSOMAL RECESSIVE PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA. GENOME BIOL, 2011. 12(9): P. R92.
- 158. TYYNISMAA, H., ET AL., THYMIDINE KINASE 2 MUTATIONS IN AUTOSOMAL RECESSIVE PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA WITH MULTIPLE MITOCHONDRIAL DNA DELETIONS. HUM MOL GENET, 2012. 21(1): P. 66-75.
- 159. MARTI-MASSO, J.F., ET AL., EXOME SEQUENCING IDENTIFIES GCDH (GLUTARYL-COA DEHYDROGENASE) MUTATIONS AS A CAUSE OF A PROGRESSIVE FORM OF EARLY-ONSET GENERALIZED DYSTONIA. HUM GENET, 2012. 131(3): P. 435-42.
- 160. GOTZ, A., ET AL., EXOME SEQUENCING IDENTIFIES MITOCHONDRIAL ALANYL-TRNA SYNTHETASE MUTATIONS IN INFANTILE MITOCHONDRIAL CARDIOMYOPATHY. AM J HUM GENET, 2011. 88(5): P. 635-42.
- 161. SUNDARAM, S.K., ET AL., EXOME SEQUENCING OF A PEDIGREE WITH TOURETTE SYNDROME OR CHRONIC TIC DISORDER. ANN NEUROL, 2011. 69(5): P. 901-4.
- 162. GLAZOV, E.A., ET AL., WHOLE-EXOME RE-SEQUENCING IN A FAMILY QUARTET IDENTIFIES POP1 MUTATIONS AS THE CAUSE OF A NOVEL SKELETAL DYSPLASIA. PLOS GENET, 2011. 7(3): P. E1002027.
- 163. BAI, R.K. AND L.J. WONG, SIMULTANEOUS DETECTION AND QUANTIFICATION OF MITOCHONDRIAL DNA DELETION(S), DEPLETION, AND OVER-REPLICATION IN PATIENTS WITH MITOCHONDRIAL DISEASE. J MOL DIAGN, 2005. 7(5): P. 613-22.

- 164. LIU, C.S., ET AL., ALTERATION IN THE COPY NUMBER OF MITOCHONDRIAL DNA IN LEUKOCYTES OF PATIENTS WITH MITOCHONDRIAL ENCEPHALOMYOPATHIES. ACTA NEUROL SCAND, 2006. 113(5): P. 334-41.
- 165. DE MENDOZA, C., ET AL., COULD MITOCHONDRIAL DNA QUANTITATION BE A SURROGATE MARKER FOR DRUG MITOCHONDRIAL TOXICITY? AIDS Rev, 2004. 6(3): p. 169-80.
- 166. RIDGE, P.G., ET AL., *MITOCHONDRIAL HAPLOTYPES ASSOCIATED WITH BIOMARKERS FOR ALZHEIMER'S DISEASE*. PLOS ONE, 2013. 8(9): P. E74158.
- 167. HAGEN, C.M., ET AL., *MITOCHONDRIAL HAPLOGROUPS MODIFY THE RISK OF DEVELOPING HYPERTROPHIC CARDIOMYOPATHY IN A DANISH POPULATION.* PLOS ONE, 2013. 8(8): P. E71904.
- 168. CRIMI, M., ET AL., SKELETAL MUSCLE GENE EXPRESSION PROFILING IN MITOCHONDRIAL DISORDERS. FASEB J, 2005. 19(7): P. 866-8.
- 169. HE, S.L., ET AL., MITOCHONDRIAL-RELATED GENE EXPRESSION PROFILES SUGGEST AN IMPORTANT ROLE OF PGC-1ALPHA IN THE COMPENSATORY MECHANISM OF ENDEMIC DILATED CARDIOMYOPATHY. EXP CELL RES, 2013. 319(17): P. 2604-16.
- 170. ZHANG, Z., ET AL., PRIMARY RESPIRATORY CHAIN DISEASE CAUSES TISSUE-SPECIFIC DYSREGULATION OF THE GLOBAL TRANSCRIPTOME AND NUTRIENT-SENSING SIGNALING NETWORK. PLOS ONE, 2013. 8(7): P. E69282.
- 171. HERRMANN, P.C. AND E.C. HERRMANN, MITOCHONDRIAL PROTEOME: TOWARD THE DETECTION AND PROFILING OF DISEASE ASSOCIATED ALTERATIONS. METHODS MOL BIOL, 2012. 823: P. 265-77.
- 172. YATSUGA S, FUJITA Y, ISHII A, FUKUMOTO Y, ARAHATA H, KAKUMA T, KOJIMA T, ITO M, TANAKA M, SAIKI R, KOGA Y. GROWTH DIFFERENTIATION FACTOR 15 AS A USEFUL BIOMARKER FOR MITOCHONDRIAL DISORDERS. ANN NEUROL. 2015 NOV;78(5):814-23. DOI: 10.1002/ANA.24506. EPUB 2015 Oct 14. PUBMED PMID: 26463265.
- 173. FUJITA Y, ITO M, KOJIMA T, YATSUGA S, KOGA Y, TANAKA M. GDF15 IS A NOVEL BIOMARKER TO EVALUATE EFFICACY OF PYRUVATE THERAPY FOR MITOCHONDRIAL DISEASES. MITOCHONDRION. 2015 JAN;20:34-42. DOI: 10.1016/J.MITO.2014.10.006. EPUB 2014 NOV 1. PUBMED PMID: 25446397.