
BIOMARKER WORKING GROUP GUIDELINES  

MITOCHONDRIAL DISEASE BIOMARKERS 

EXERCISE TESTING 

CYCLE ERGOMETRY THE CHARACTERIZATION OF EXERCISE INTOLERANCE IN MITOCHONDRIAL DISEASE IS 

PERFORMED USING CYCLE ERGOMETRY WITH MEASUREMENTS OF VO2, VCO2, 
RESPIRATORY EXCHANGE RATIO (RER = VCO2/VO2), HEART RATE, MINUTE VENTILATION, 
RATING OF PERCEIVED EXERTION, AND CARDIAC OUTPUT. EXERCISE PROTOCOLS TO 

MAXIMUM OR FOR A GIVEN TIME PERIOD AT A SET WORKLOAD CAN DIFFERENTIATE 

MITOCHONDRIAL DISEASE FROM CONTROLS WITH A SENSITIVITY OF APPROXIMATELY 0.63-
0.75 AND A SPECIFICITY OF 0.70-0.90. 

[1-6] 

BLOOD (SERUM / PLASMA) 

LACTATE LACTATE, THE PRODUCT OF ANAEROBIC GLUCOSE METABOLISM, ACCUMULATES WHEN 

AEROBIC METABOLISM IS IMPAIRED, WHICH CAUSES A SHIFT IN THE OXIDIZED-TO-REDUCED 

NAD_/ NADH RATIO WITHIN MITOCHONDRIA (IE, DECREASE IN THE OXIDIZED 

NICOTINAMIDE-ADENINE DINUCLEOTIDE/REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE 

“REDOX” RATIO).NORMAL LACTATE DOES NOT EXCLUDE A MITOCHONDRIAL DISEASE, AND 

INCREASES IN LACTATE ARE NOT SPECIFIC TO THESE DISEASES. CAREFUL COLLECTION IS 

IMPORTANT SINCE A VARIETY OF DIFFICULTIES WITH COLLECTION INCLUDING PROLONGED 

TOURNIQUET USE AND STRUGGLING DURING BLOOD DRAW CAN ELEVATE LEVELS.  
SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 5% 

AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED 

AT APPROXIMATELY 50% AND 77% RESPECTIVELY.  SENSITIVITY AND SPECIFICITY FOR 

MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 15% AND 83%, 
RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED AT 

APPROXIMATELY 89% AND 59% RESPECTIVELY. 

[7-10] 

PYRUVATE INCREASES IN PYRUVATE SIGNALS DYSFUNCTION OF THE CELLULAR OXIDATIVE PROCESS. 
NORMAL PYRUVATE DOES NOT EXCLUDE A MITOCHONDRIAL DISEASE, AND 
INCREASE IN PYRUVATE ARE NOT SPECIFIC TO THESE DISEASES. CAREFUL COLLECTION IS 

IMPORTANT SINCE A VARIETY OF DIFFICULTIES WITH COLLECTION INCLUDING PROLONGED 

TOURNIQUET USE AND STRUGGLING DURING BLOOD DRAW CAN ELEVATE LEVELS.  
SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 40% 

AND 83%, RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED 

AT APPROXIMATELY 42% AND 81% RESPECTIVELY.  SENSITIVITY AND SPECIFICITY FOR 

MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 34% AND 83%, 
RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED AT 

APPROXIMATELY 62% AND 61% RESPECTIVELY. 

[7-10] 

LACTATE / PYRUVATE RATIO THE BLOOD LACTATE-TO-PYRUVATE (L:P) RATIO REFLECTS THE EQUILIBRIUM BETWEEN 

PRODUCT AND SUBSTRATE OF THE REACTION CATALYZED BY LACTATE DEHYDROGENASE. 
THE L:P RATIO IS CORRELATED WITH THE CYTOPLASMIC NADH:NAD+ RATIO AND IS USED 

AS A MARKER OF THE REDOX STATE. WITH IMPAIRMENT OF CELLULAR RESPIRATION, 
PYRUVATE OXIDATION IS REDUCED, RESULTING IN AN INCREASE IN THE  L:P RATIO. IN 

PYRUVATE DEHYDROGENASE DEFICIENCY (PDH DEFICIENTY), THE METABOLIC BLOCK IS 

UPSTREAM OF THE RESPIRATORY CHAIN. THE L:P RATIO IS NORMAL OR LOW. AN 

INCREASED L:P RATIO (>25) SUGGESTS PRIMARY OR SECONDARY RESPIRATORY CHAIN 

DYSFUNCTION. A RATIO <25 MAY INDICATE A PDH DEFECT IN THE APPROPRIATE CLINICAL 

SETTING.  SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE 

APPROXIMATELY 5% AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE 

VALUES ARE ESTIMATED AT APPROXIMATELY 50% AND 77% RESPECTIVELY.  SENSITIVITY 

AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 11% 

AND 98%, RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED 

AT APPROXIMATELY 86% AND 58% RESPECTIVELY. 

[7-10] 

AMINO ACIDS (EMPHASIS ON ALANINE,  ALANINE / 
LYSINE RATIO, ALANINE / PHENYLALANINE + 

LYSINE RATIO, CITRULLINE ) 

ELEVATED ALANINE, GLYCINE, PROLINE, SARCOSINE, OR TYROSINE CAN BE OBSERVED IN 

MITOCHONDRIAL DISEASES. ELEVATED PLASMA ALANINE LEVELS, WHEN PRESENT, MAY BE 

A USEFUL INDICATOR OF LONG-STANDING PYRUVATE ACCUMULATION. 

[7-9, 
11] 

CARNITINE LEVELS CARNITINE PLAYS AN ESSENTIAL ROLE IN THE TRANSLOCATION OF LONG-CHAIN FATTY-
ACIDS INTO THE MITOCHONDRIAL MATRIX FOR SUBSEQUENT BETA-OXIDATION, AND HAS A 

VITAL ROLE IN THE REGULATION OF BOTH FAT AND CARBOHYDRATE MUSCLE METABOLISM. 
FREE CARNITINE TENDS TO BE LOWER THAN NORMAL IN BLOOD OF PATIENTS WITH ETC 

DEFECTS, WHEREAS ESTERIFIED CARNITINE TENDS TO BE INCREASED. MEDICATIONS AND 

TOXINS CAN ALSO SIGNIFICANTLY AFFECT MITOCHONDRIAL FUNCTION SUCH AS VALPROATE 

WHICH CAN PRODUCE CARNITINE DEFICIENCY. 

[7, 9] 



ACYLCARNITINES CARNITINE PLAYS AN ESSENTIAL ROLE IN THE TRANSFER OF LONG-CHAIN FATTY ACIDS INTO 

THE MITOCHONDRIA FOR BETA-OXIDATION. CARNITINE BINDS ACYL RESIDUES TO ENHANCE 

ELIMINATION. THIS MECHANISM IS ESSENTIAL IN REMOVING ABNORMAL ORGANIC ACIDS IN 

SEVERAL ORGANIC ACIDEMIAS AND OFTEN CAUSES SECONDARY CARNITINE DEFICIENCIES. 
SECONDARY CARNITINE DEFICIENCIES CAN OCCUR IN MITOCHONDRIAL DISEASES.   

[7-9, 
12] 

CPK CREATINE KINASE ACTIVITY IS GREATEST IN STRIATED MUSCLE, HEART TISSUE, AND BRAIN. 
THE DETERMINATION OF CK ACTIVITY IS A COMMONLY USED ASSAY IN THE INVESTIGATION 

OF SKELETAL MUSCLE DISEASE. PATIENTS WITH MITOCHONDRIAL DISEASE CAN HAVE 

INCREASES IN CPK OR EVEN EPISODES OF RHABDOMYOLYSIS. SENSITIVITY AND 

SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 35% AND 97%, 
RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED AT 

APPROXIMATELY 78% AND 83% RESPECTIVELY.  SENSITIVITY AND SPECIFICITY FOR 

MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 22% AND 97%, 
RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED AT 

APPROXIMATELY 86% AND 60% RESPECTIVELY. 

[7, 8, 
10] 

CREATINE THE CONCENTRATION OF CREATINE  IS LINKED TO THE CONCENTRATION OF 

PHOSPHOCREATINE (PCR) THROUGH THE CR KINASE REACTION, WHOSE KINETICS ARE 

INFLUENCED BY THE BALANCE BETWEEN MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION 

ACTIVITY AND ATP DEMAND. ELEVATION OF PLASMA CREATINE IN RCD PATIENTS SIGNALS 

A LOW ENERGETIC STATE OF TISSUES USING THE PHOSPHOCREATINE SHUTTLE. 

[13] 

FREE GLUTATHIONE (FGSH), OXIDIZED DISULFIDE 

(GSSG), FGSH/GSSG RATIO 
GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. FREE GSH/GSSG RATIO 

IS AN INDICATOR OF REDOX METABOLISM (OXIDATIVE STRESS MARKER). GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[11, 14, 
15] 

PLASMA CARBONYL CONTENT PROTEIN CARBONYLS ARE PRIMARILY PRODUCED AS A RESULT OF ROS MEDIATED PROTEIN 

DAMAGE AND MAY ALSO BE CAUSED BY REACTIVE ALDEHYDE INTERMEDIATES OF ORGANIC 

ACIDS. PROTEIN CARBONYLS ARE MARKERS FOR OXIDATIVE PROTEIN DAMAGE. INCREASES 

CAN BE OBSERVED IN MITOCHONDRIAL DISEASES.  

[11] 

FIBROBLAST GROWTH FACTOR 21 (FGF21) MITOCHONDRIAL DISEASES PRODUCE  A TRANSCRIPTIONAL RESPONSE MIMICKING 

STARVATION WHICH INCLUDES INCREASED EXPRESSION OF THE METABOLIC REGULATOR 

FGF21. SENSITIVITY AND SPECIFICITY FOR CONTROLS IS ESTIMATED TO BE APPROXIMATELY 

35% AND 95%, RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE 

ESTIMATED AT APPROXIMATELY 70% AND 83% RESPECTIVELY.  SENSITIVITY AND 

SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE APPROXIMATELY 66% AND 

95%, RESPECTIVELY. NEGATIVE AND POSITIVE  PREDICTIVE VALUES ARE ESTIMATED AT 

APPROXIMATELY 92% AND 78% RESPECTIVELY. FGF-21 IS KNOWN TO BE INCREASED IN A 

WIDE RANGE OF METABOLIC DISORDERS SUCH AS DIABETES, OBESITY, AND THE METABOLIC 

SYNDROME. 

[10, 16-
23] 

GROWTH DIFFERENTIATION FACTOR – 15 (GDF-
15) 

GROWTH DIFFERENTIATION FACTOR 15 (GDF-15), A MEMBER OF THE TRANSFORMING 

GROWTH FACTOR BETA SUPERFAMILY, HAS BEEN PROPOSED AS A USEFUL BIOMARKER FOR 

MITOCHONDRIAL DISORDERS. SENSITIVITY AND SPECIFICITY FOR DISEASE CONTROL IS 

ESTIMATED TO BE 98% (VS. 77% IN FGF-21) AND 52% (VS. 79% IN FGF-21), 
RESPECTIVELY. SENSITIVITY AND SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED 

TO BE 98% (VS. 77% IN FGF-21) AND 86% (VS. 86% IN FGF-21) 7. GDF-15 IS KNOWN 

TO BE INCREASED IN CARDIAC FAILURE, RENAL INSUFFICIENCY AND PROSTATE CANCER. 
 

[172-
173] 

METABOLIC PROFILING METABOLIC PROFILING PROVIDES INFORMATION ON CONSUMPTION AND SECRETION OF 

METABOLIC INTERMEDIATES. THIS METHOD ASSESSES A WIDE BIOCHEMICAL SPECTRUM 
INCLUDING AMINO ACIDS, ORGANIC ACIDS, NUCLEOTIDES, AND SUGARS, 
ENABLING SIMULTANEOUS MONITORING OF MULTIPLE METABOLIC PATHWAYS. METABOLIC 

PROFILING IS PERFORMED BY LC-MS/MS IN CULTURE MEDIA. PLASMA MEASUREMENTS  OF 

MITOCHONDRIAL DYSFUNCTION; CORRELATES WITH EXTRACELLULAR METABOLIC PROFILE 

IN MYOTUBES (SEE BELOW). 

[13] 

HEPATIC ENZYMES (AST, ALT, GGT) ASPARTATE AMINOTRANSFERASE (AST) IS FOUND IN HIGH CONCENTRATIONS IN LIVER, 
HEART, SKELETAL MUSCLE AND KIDNEY. AST IS PRESENT IN BOTH CYTOPLASM AND 

MITOCHONDRIA OF CELLS. ALANINE AMINOTRANSFERASE (ALT) IS PRESENT PRIMARILY IN 

LIVER CELLS. IN VIRAL HEPATITIS AND OTHER FORMS OF LIVER DISEASE ASSOCIATED WITH 

HEPATIC NECROSIS, SERUM ALT IS ELEVATED EVEN BEFORE THE CLINICAL SIGNS AND 

[8] 



SYMPTOMS OF THE DISEASE APPEAR. GAMMA-GLUTAMYLTRANSFERASE (GGT) IS 

PRIMARILY PRESENT IN KIDNEY, LIVER, AND PANCREATIC CELLS. SOME MITOCHONDRIAL 

DISEASES HAVE HEPATIC INVOLVEMENT THAT CAN BE MILD TO SEVERE. IN SOME PATIENTS 

HEPATIC FAILURE OCCURS (E.G ALPER DISEASE). 

AMMONIA HYPERAMMONEMIA CAN OCCUR WHEN THERE IS IMPAIRED CAPACITY OF THE BODY TO 

EXCRETE NITROGENOUS WASTE. AMMONIA IS ELEVATED IN THE FOLLOWING CONDITIONS: 
LIVER DISEASE, URINARY TRACT INFECTION WITH DISTENTION AND STASIS, REYE 

SYNDROME, INBORN ERRORS OF METABOLISM INCLUDING DEFICIENCY OF ENZYMES IN THE 

UREA CYCLE, HHH SYNDROME (HYPERAMMONEMIA-HOMOCITRULLINURIA, 
HYPERORNITHINEMIA), SOME NORMAL NEONATES (USUALLY RETURNING TO NORMAL IN 48 

HOURS), TOTAL PARENTERAL NUTRITION, URETEROSIGMOIDOSTOMY, AND SODIUM 

VALPROATE THERAPY. SOME MITOCHONDRIAL DISEASES HAVE HEPATIC INVOLVEMENT THAT 

CAN BE MILD TO SEVERE. IN SOME PATIENTS HEPATIC FAILURE OCCURS (E.G ALPER 

DISEASE). 

[8] 

THYMIDINE A GROUP OF MITOCHONDRIAL DISEASES ARE CAUSED BY MUTATIONS IN GENES THAT 

ENCODE PROTEINS THAT MAINTAIN THE MITOCHONDRIAL DNTP POOL. THESE MUTATIONS 

CAUSE AN ACCUMULATION OF THYMIDINE AND DEOXYURIDINE, LEADING TO AN IMBALANCE 

OF CYTOSOLIC DNTP POOLS. BECAUSE THE MITOCHONDRIAL DNTP POOL RELIES, IN PART, 
ON DNTP IMPORTED FROM THE CYTOSOL, AN IMBALANCED CYTOSOLIC DNTP POOL CAN 

LEAD TO AN IMBALANCED MITOCHONDRIAL DNTP POOL THAT CAN IMPAIR MTDNA 

SYNTHESIS.  

[24, 25] 

DEOXYURIDINE A GROUP OF MITOCHONDRIAL DISEASES ARE CAUSED BY MUTATIONS IN GENES THAT 

ENCODE PROTEINS THAT MAINTAIN THE MITOCHONDRIAL DNTP POOL. THESE MUTATIONS 

CAUSE AN ACCUMULATION OF THYMIDINE AND DEOXYURIDINE, LEADING TO AN IMBALANCE 

OF CYTOSOLIC DNTP POOLS. BECAUSE THE MITOCHONDRIAL DNTP POOL RELIES, IN PART, 
ON DNTP IMPORTED FROM THE CYTOSOL, AN IMBALANCED CYTOSOLIC DNTP POOL CAN 

LEAD TO AN IMBALANCED MITOCHONDRIAL DNTP POOL THAT CAN IMPAIR MTDNA 

SYNTHESIS. 

[24, 25] 

URINE 

ORGANIC ACIDS URINE ORGANIC ACID TESTING IS USEFUL IN THE DIAGNOSIS AND MONITORING OF PATIENTS 

WITH INBORN ERRORS OF ORGANIC ACID METABOLISM, INBORN ERRORS OF AMINO ACID 

METABOLISM, UREA CYCLE DEFECTS, AND DEFECTS OF THE MITOCHONDRIAL RESPIRATORY 

CHAIN. ORGANIC ACID ANALYSIS MAY FAIL TO DETECT CERTAIN DISORDERS THAT ARE 

CHARACTERIZED BY MINIMAL OR INTERMITTENT METABOLITE EXCRETION. METABOLIC 

CHANGES OBSERVED IN MITOCHONDRIAL DISEASES INCLUDE INCREASED LEVELS OF TCA 

INTERMEDIATES, LACTATE, PYRUVATE, 3-METHYLGLUTACONIC ACID). 

[7, 8, 
26] 

3-METHYLGLUTACONIC ACID THE BRANCHED-CHAIN ORGANIC ACID 3-METHYLGLUTACONIC ACID (3-MGA) IS AN 

INTERMEDIATE OF THE MITOCHONDRIAL LEUCINE CATABOLISM. HOWEVER, IN 

MITOCHONDRIAL DISEASES, 3-MGA IS A BIOCHEMICAL MARKER FOR MITOCHONDRIAL 

DYSFUNCTION OF STILL UNKNOWN ORIGIN. 

[27, 28] 

AMINO ACIDS ELEVATED ALANINE, GLYCINE, PROLINE, SARCOSINE, OR TYROSINE CAN BE OBSERVED IN 

MITOCHONDRIAL DISEASES. ELEVATED PLASMA ALANINE LEVELS, WHEN PRESENT, MAY BE 

A USEFUL INDICATOR OF LONG-STANDING PYRUVATE ACCUMULATION. URINE AMINO ACIDS 

MAY ALSO DETECT PROXIMAL RENAL TUBULE DYSFUNCTION LEADING TO A GENERALIZED 

AMINOACIDURIA.  

[7, 8] 

CSF 

LACTATE LACTATE CONCENTRATIONS IN CSF RESULT FROM A COMPLEX BALANCE BETWEEN EFFLUX 

AND INFLUX THROUGH THE BLOOD–BRAIN BARRIER AND THROUGH THE PLASMA MEMBRANE 

OF CENTRAL NERVOUS SYSTEM CELLS. CSF LACTATE CONCENTRATIONS WERE MORE 

SENSITIVE FOR MITOCHONDRIAL  DISORDERS THAN ARE BLOOD LACTATE CONCENTRATIONS. 
LACTATE IS INCREASED WITH OXIDATIVE PHOSPHORYLATION DEFECTS. BOTH PYRUVATE 

AND LACTATE CONCENTRATIONS ARE INCREASED IN PDH DEFICIENCY, BUT THE L/P RATIO 

REMAINS NORMAL OR ONLY SLIGHTLY DECREASED. LACTATE IS REPORTED TO HAVE A 

SENSITIVITY OF 73%, SPECIFICITY OF 97%, POSITIVE PREDICTIVE VALUE OF 65% AND 

NEGATIVE PREDICTIVE VALUE OF 93%. EVEN WHEN PLASMA LEVELS OF LACTATE AND 

PYRUVATE ARE NORMAL, CEREBROSPINAL FLUID (CSF) LACTATE LEVELS MAY BE 

ELEVATED IN PATIENTS WITH MITOCHONDRIAL DISEASE WHO HAVE PREDOMINANT BRAIN 

MANIFESTATIONS. 

[7, 8] 
[29] 

PYRUVATE PYRUVIC ACID, AN INTERMEDIATE METABOLITE, PLAYS AN IMPORTANT ROLE IN LINKING 

CARBOHYDRATE AND AMINO ACID METABOLISM TO THE TRICARBOXYLIC ACID CYCLE, THE 

FATTY ACID BETA-OXIDATION PATHWAY, AND THE MITOCHONDRIAL RESPIRATORY CHAIN 

COMPLEX.PYRUVATE IS REPORTED TO HAVE A SENSITIVITY OF 42%, SPECIFICITY OF 97%, 

[7, 8] 
[29] 



POSITIVE PREDICTIVE VALUE OF 79% AND NEGATIVE PREDICTIVE VALUE OF 96%. EVEN 

WHEN PLASMA LEVELS OF LACTATE AND PYRUVATE ARE NORMAL, CEREBROSPINAL FLUID 

(CSF) LACTATE LEVELS MAY BE ELEVATED IN PATIENTS WITH MITOCHONDRIAL DISEASE 

WHO HAVE PREDOMINANT BRAIN MANIFESTATIONS. 

LATATE / PYRUVATE RATIO THE CSF LACTATE-TO-PYRUVATE (L:P) RATIO REFLECTS THE EQUILIBRIUM BETWEEN 

PRODUCT AND SUBSTRATE OF THE REACTION CATALYZED BY LACTATE DEHYDROGENASE. 
THE L:P RATIO IS CORRELATED WITH THE CYTOPLASMIC NADH:NAD+ RATIO AND IS USED 

AS A MARKER OF THE REDOX STATE. WITH IMPAIRMENT OF CELLULAR RESPIRATION, 
PYRUVATE OXIDATION IS REDUCED AND LACTATE IS INCREASED, RESULTING IN AN 

INCREASE IN THE  L:P RATIO. IN PYRUVATE DEHYDROGENASE DEFICIENCY (PDH 

DEFICIENTY), THE METABOLIC BLOCK IS UPSTREAM OF THE RESPIRATORY CHAIN. BOTH 

PYRUVATE AND LACTATE CONCENTRATIONS ARE INCREASED IN PDH DEFICIENCY, BUT THE 

L/P RATIO REMAINS NORMAL OR ONLY SLIGHTLY DECREASED. AN INCREASED L:P RATIO 

(>25) SUGGESTS PRIMARY OR SECONDARY RESPIRATORY CHAIN DYSFUNCTION. A RATIO 

<25 MAY INDICATE A PDH DEFECT IN THE APPROPRIATE CLINICAL SETTING.  THE 

LACTATE/PYRUVATE RATIO IS REPORTED TO HAVE A SENSITIVITY OF 31%, SPECIFICITY OF 

97%, POSITIVE PREDICTIVE VALUE OF 62% AND NEGATIVE PREDICTIVE VALUE OF 91%. 
EVEN WHEN PLASMA LEVELS OF LACTATE AND PYRUVATE ARE NORMAL, CEREBROSPINAL 

FLUID (CSF) LACTATE LEVELS MAY BE ELEVATED IN PATIENTS WITH MITOCHONDRIAL 

DISEASE WHO HAVE PREDOMINANT BRAIN MANIFESTATIONS. 

[29] 

AMINO ACIDS (ALANINE,  ALANINE / LYSINE RATIO, 
ALANINE / PHENYLALANINE + LYSINE RATIO) 

ELEVATED ALANINE, GLYCINE, PROLINE, SARCOSINE, OR TYROSINE CAN BE OBSERVED IN 

MITOCHONDRIAL DISEASES. ELEVATED PLASMA ALANINE LEVELS, WHEN PRESENT, MAY BE 

A USEFUL INDICATOR OF LONG-STANDING PYRUVATE ACCUMULATION. 

[7, 8] 

CELL COUNT CELL COUNT CAN BE HELPFUL IN ASSESSING THEN METABOLIC PARAMETERS BY 

ASSESSING FOR INCREASES IN RED BLOOD CELLS DUE TO TRAUMATIC SPINAL TAP. 
[8] 

PROTEIN CEREBROSPINAL FLUID (CSF) IS SECRETED BY THE CHOROID PLEXUSES, AROUND THE 

CEREBRAL VESSELS, AND ALONG THE WALLS OF THE VENTRICLES OF THE BRAIN. CSF 

TURNOVER IS RAPID, EXCHANGING ABOUT FOUR TIMES PER DAY. MORE THAN 80% OF CSF 

PROTEIN CONTENT ORIGINATES FROM PLASMA BY ULTRAFILTRATION THROUGH THE WALLS 

OF CAPILLARIES IN THE MENINGES AND CHOROID PLEXUSES; THE REMAINDER ORIGINATES 

FROM INTRATHECAL SYNTHESIS. INCREASES ARE OBSERVED IN SOME DISORDERS SUCH AS 

LEIGH DISEASE, ALPER SYNDROME, AND KEARNS-SAYRE SYDROME.  

[8] 

GLUCOSE (WITH SIMULTANEOUS BLOOD 

GLUCOSE) 
CSF GLUCOSE LEVELS MAY BE DECREASED DUE TO CONSUMPTION BY MICROORGANISMS, 
IMPAIRED GLUCOSE TRANSPORT, OR INCREASED GLYCOLYSIS. CSF GLUCOSE IS NORMAL IN 

MOST MITOCHONDRIAL DISEASES. GLUT1 DEFICIENCY SYNDROME IS A TREATABLE 

NEUROMETABOLIC DISORDER, CHARACTERIZED BY A LOW CONCENTRATION OF GLUCOSE IN 

CEREBROSPINAL FLUID (CSF) AND A DECREASED CSF TO BLOOD GLUCOSE RATIO. THIS 

DECREASE IN CSF GLUCOSE LIMITS ATP GENERATION BY CELLULAR ENERGETICS. 

[8, 30] 

GROWTH DIFFERENTIATION FACTOR – 15 (GDF-
15) 

GROWTH DIFFERENTIATION FACTOR 15 (GDF-15), A MEMBER OF THE TRANSFORMING 

GROWTH FACTOR BETA SUPERFAMILY, HAS BEEN PROPOSED AS A USEFUL BIOMARKER FOR 

MITOCHONDRIAL DISORDERS. IT IS ALSO EXCRETED IN THE CSF WHICH IS REFLECTED BY 

THE SERUM LEVEL IN MITOCHONDRIAL DISORDERS. SENSITIVITY AND SPECIFICITY FOR 

DISEASE CONTROL IS ESTIMATED TO BE 98% AND 52%, RESPECTIVELY. SENSITIVITY AND 

SPECIFICITY FOR MITOCHONDRIAL DISEASE IS ESTIMATED TO BE 98% AND 86%. GDF-15 IS 

KNOWN TO BE INCREASED IN CARDIAC FAILURE, RENAL INSUFFICIENCY, AND PROSTATE 

CANCER. 
 

[172-
173] 

FIBROBLASTS 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[31, 32] 

OXPHOS ENZYMOLOGY  OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL 

ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) 
COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY 

ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED 

BY OXPHOS ENZYMOLOGY. 

[32] 

LACTATE /PYRUVATE RATIO THE FIBROBLAST LACTATE-TO-PYRUVATE (L:P) RATIO REFLECTS THE EQUILIBRIUM 

BETWEEN PRODUCT AND SUBSTRATE OF THE REACTION CATALYZED BY LACTATE 

DEHYDROGENASE. THE L:P RATIO IS CORRELATED WITH THE CYTOPLASMIC NADH:NAD+ 

RATIO AND IS USED AS A MARKER OF THE REDOX STATE. WITH IMPAIRMENT OF CELLULAR 

RESPIRATION, PYRUVATE OXIDATION IS REDUCED AND LACTATE IS INCREASED, RESULTING 

[31] 



IN AN INCREASE IN THE  L:P RATIO. IN PYRUVATE DEHYDROGENASE DEFICIENCY (PDH 

DEFICIENTY), THE METABOLIC BLOCK IS UPSTREAM OF THE RESPIRATORY CHAIN. BOTH 

PYRUVATE AND LACTATE CONCENTRATIONS ARE INCREASED IN PDH DEFICIENCY, BUT THE 

L/P RATIO REMAINS NORMAL OR ONLY SLIGHTLY DECREASED.   

PYRUVATE DEHYDROGENASE ENZYMOLOGY THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE-
LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR 

ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER 

OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION 

MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1Α-SUBUNIT. 
THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS 

IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE 

SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1-
14C-PYRUVATE TO 14CO2 AND WAS EXPRESSED AS A UNIT OF 14CO2 PRODUCTION PER 

TISSUE MASS PER UNIT OF TIME.  

[33, 34] 

PYRUVATE DEHYDROGENASE SUBUNIT WESTERN 

BLOT 
WESTERN BLOTTING OF DENATURED SUBUNITS OF PYRUVATE DEHYDROGENASE ALLOW 

RECOGNITION OF PYRUVATE DEHYDROGENASE DEFICIENCIES WHEN A SUBUNIT IS 

DECREASED, MISSING OR OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS 

MORE AMENABLE TO PROTEIN QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO 

CONFIRM MOLECULAR IDENTITY OF THE TARGET PROTEIN BY MOLECULAR WEIGHT.   

[35] 

PYRUVATE DEHYDROGENASE 

IMMUNOHISTOCHEMISTRY 
IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF 

CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE 

CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION 

MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS 

CAN BE DETECTED.  

[35] 

ATP SYNTHESIS  [36] 

FIBROBLAST OXPHOS SUBUNIT 

IMMUNOHISTOCHEMISTRY 
IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF 

CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE 

CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION 

MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS 

CAN BE DETECTED. 

[37] 

OXPHOS  SUBUNIT WESTERN BLOT WESTERN BLOTTING OF DENATURED SELECTED SUBUNITS OF OXPHOS ENZYMES  

ALLOWS  RECOGNITION OF DEFECTS  CAUSING A SUBUNIT TO BE  DECREASED, MISSING OR 

OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS MORE AMENABLE TO PROTEIN 

QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO CONFIRM MOLECULAR IDENTITY OF 

THE TARGET PROTEIN BY MOLECULAR WEIGHT.   

 

BLUE NATIVE GEL ELECTROPHORESIS 

(OXPHOS) 
CLEAR NATIVE ELECTROPHORESIS AND BLUE NATIVE ELECTROPHORESIS ARE MICROSCALE 

TECHNIQUES FOR THE ISOLATION OF MEMBRANE PROTEIN COMPLEXES. PROTEINS ARE 

VISUALIZED IN BLUE NATIVE GELS WITH COOMASSIE BLUE G-250 DYE. BLUE NATIVE-
PAGE RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. 
BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY 

SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED. 

[38, 39] 

CLEAR NATIVE GEL OXPHOS IMMUNOBLOT CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN THEIR INTACT AND 

ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, 
AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE 

DETERMINED BY IMMUNOBLOTTING USING ONE OR MORE SUBUNIT ANTIBODIES. 

[39] 

CLEAR NATIVE GEL OXPHOS ENZYMOLOGY CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN 
THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY 

ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY 

INTERMEDIATES, CAN THEN BE DETERMINED BY ASSESSING THE ENZYME ACTIVITY OF EACH 

OXPHOS ENZYME. 

[39] 

COENZYME Q10 COENZYME Q10 DEFICIENCY [40-43] 

LEUKOCYTES 

INTRACELLULAR  FREE GLUTATHIONE (FGSH), 
OXIDIZED DISULFIDE (GSSG), FGSH/GSSG 

RATIO 

GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. FREE GSH/GSSG RATIO 

IS AN INDICATOR OF REDOX METABOLISM (OXIDATIVE STRESS MARKER). GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[11] 

INTRACELLULAR COENZYME Q10  [44] 



PYRUVATE DEHYDROGENASE ENZYMOLOGY THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE-
LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR 

ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER 

OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION 

MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1Α-SUBUNIT. 
THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS 

IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE 

SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1-
14C-PYRUVATE TO 14CO2 AND WAS EXPRESSED AS A UNIT OF 14CO2 PRODUCTION PER 

TISSUE MASS PER UNIT OF TIME. 

 

THYMIDINE PHOSPHORYLASE ENZYMOLOGY  [24, 25] 

COENZYME Q10 LEVEL COENZYME Q10 DEFICIENCY [45] 

NEUTROPHILS 

OXPHOS ENZYMOLOGY  OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL 

ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) 
COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY 

ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED 

BY OXPHOS ENZYMOLOGY. 

[46] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[46] 

COENZYME Q10 COENZYME Q10 DEFICIENCY [46] 

INTRACELLULAR GLUTATHIONE GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL.  GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[11] 

LEUKOCYTES/MONOCYTES 

INTRACELLULAR  FREE GLUTATHIONE (FGSH), 
OXIDIZED DISULFIDE (GSSG), FGSH/GSSG 

RATIO 

GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL. FREE GSH/GSSG RATIO 

IS AN INDICATOR OF REDOX METABOLISM (OXIDATIVE STRESS MARKER). GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[11] 

PYRUVATE DEHYDROGENASE ENZYMOLOGY THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE-
LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR 

ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER 

OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION 

MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1Α-SUBUNIT. 
THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS 

IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE 

SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1-
14C-PYRUVATE TO 14CO2 AND WAS EXPRESSED AS A UNIT OF 14CO2 PRODUCTION PER 

TISSUE MASS PER UNIT OF TIME. 

 

THYMIDINE PHOSPHORYLASE ENZYMOLOGY  [24, 25] 

OXPHOS ENZYMOLOGY  OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL 

ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) 
COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY 

ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED 

BY OXPHOS ENZYMOLOGY. 

[46] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[46] 

COENZYME Q10 INHERITED COENZYME Q10 DEFICIENCY IS A POTENTIALLY TREATABLE MITOCHONDRIAL 

DISEASE.  COENZYME Q10 LEVELS IN SKELETAL MUSCLE CORRELATE BETTER WITH 

[44-46] 



MONOCYTE COQ10 LEVELS THAN PLASMA COQ10 LEVELS.  

INTRACELLULAR GLUTATHIONE GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL.  GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[11] 

PLATELETS (HIGH OXPHOS) 

OXPHOS ENZYMOLOGY  OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL 

ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) 
COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY 

ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED 

BY OXPHOS ENZYMOLOGY. 

[46] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[46, 47] 

COENZYME Q10 COENZYME Q10 DEFICIENCY [46] 

PERIPHERAL-TYPE BENZODIAZEPINE RECEPTOR 

BINDING KINETICS 
KINETIC BINDING PARAMETERS OF PBR ARE ALTERED IN MITOCHONDRIAL DISEASE [48] 

LYMPHOCYTES (HIGHEST OXPHOS) 

OXPHOS ENZYMOLOGY  OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL 

ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) 
COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY 

ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED 

BY OXPHOS ENZYMOLOGY. 

[46] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[46] 

COENZYME Q10 COENZYME Q10 DEFICIENCY [46] 

INTRACELLULAR GLUTATHIONE GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL.  GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[11] 

DNA STRAND BREAKS BY COMET ASSAY 

(CULTURED CELLS) 
SINGLE CELL GEL ELECTROPHORESIS WHICH ESTIMATES LEVELS OF PRIMARY AND 

OXIDATIVE DNA DAMAGE 
[49, 50] 

MICRONUCLEUS ASSAY FOLLOWED BY 

FLUORESCENCE IN SITU HYBRIDISATION 
CHROMOSOME DAMAGE IN PERIPHERAL BLOOD LYMPHOCYTES IN MITOCHONDRIAL DISEASE; 

CYTOKINESIS BLOCK MICRONUCLEUS METHOD IN CULTURED PERIPHERAL BLOOD 

LYMPHOCYTES, COUPLED WITH FLUORESCENCE IN SITU HYBRIDIZATION ANALYSIS USING A 

DIGOXIGENIN-LABELLED PANCENTROMERIC DNA PROBE 

[50, 51] 

PYRUVATE DEHYDROGENASE THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE-
LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR 

ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER 

OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION 

MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1Α-SUBUNIT. 
THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS 

IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE 

SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1-
14C-PYRUVATE TO 14CO2 AND WAS EXPRESSED AS A UNIT OF 14CO2 PRODUCTION PER 

TISSUE MASS PER UNIT OF TIME. 

[52, 53] 

LYMPHOBLASTS (EBV TRANSFORMED) 

ATP SYNTHESIS  [54] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[54] 



MUSCLE BIOCHEMISTRY 

OXPHOS ENZYMOLOGY  OXPHOS ENZYMOLOGY ASSESSES MITOCHONDRIAL FUNCTION BY DETERMINING MAXIMAL 

ENZYMATIC ACTIVITY OF THE INDIVIDUAL ELECTRON TRANSPORT SYSTEM (ETS) 
COMPLEXES IN DISRUPTED MITOCHONDRIA BY SPECTROPHOTOMETRY. HOWEVER, MANY 

ASPECTS OF MITOCHONDRIAL FUNCTION THAT OCCUR IN LIVE CELLS CANNOT BE ASSESSED 

BY OXPHOS ENZYMOLOGY. 

[32] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

 

MTDNA COPY NUMBER  MTDNA DEPLETION   

MTDNA DELETION/DUPLICATION MTDNA DELETION DISORDERS; SOMATIC MUTATIONS  

PYRUVATE DEHYDROGENASE ENZYMOLOGY THE MITOCHONDRIAL PYRUVATE DEHYDROGENASE COMPLEX (PDC) CATALYZES THE RATE-
LIMITING STEP IN THE AEROBIC GLUCOSE OXIDATION AND IS THUS INTEGRAL TO CELLULAR 

ENERGETICS. PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY IS AN INHERITED DISORDER 

OF CARBOHYDRATE METABOLISM. PDH DEFICIENCY IS DUE TO LOSS-OF-FUNCTION 

MUTATION IN ONE OF THE FIVE COMPONENT ENZYMES, MOST COMMONLY E1Α-SUBUNIT. 
THE COMMON CLINICAL PRESENTATION RANGES FROM FATAL INFANTILE LACTIC ACIDOSIS 

IN NEWBORNS TO CHRONIC NEUROLOGICAL DYSFUNCTION. PYRUVATE DEHYDROGENASE 

SPECIFIC ACTIVITY IS TYPICALLY DETERMINED BY MEASURING THE DECARBOXYLATION OF 1-
14C-PYRUVATE TO 14CO2 AND WAS EXPRESSED AS A UNIT OF 14CO2 PRODUCTION PER 

TISSUE MASS PER UNIT OF TIME. 

[34, 55] 

PYRUVATE DEHYDROGENASE SUBUNIT WESTERN 

BLOT 
WESTERN BLOTTING OF DENATURED SUBUNITS OF PYRUVATE DEHYDROGENASE ALLOW 

RECOGNITION OF PYRUVATE DEHYDROGENASE DEFICIENCIES WHEN A SUBUNIT IS 

DECREASED, MISSING OR OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS 

MORE AMENABLE TO PROTEIN QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO 

CONFIRM MOLECULAR IDENTITY OF THE TARGET PROTEIN BY MOLECULAR WEIGHT.   

[35] 

COENZYME Q10 COENZYME Q10 DEFICIENCY [40, 41] 

GLUTATHIONE GLUTATHIONE (GSH) IS THE MAIN NON-PROTEIN THIOL IN CELLS. GSH FUNCTIONS ARE 

DEPENDENT ON THE REDOX-ACTIVE THIOL OF ITS CYSTEINE MOIETY THAT SERVES AS A 

COFACTOR FOR A NUMBER OF ANTIOXIDANT AND DETOXIFYING ENZYMES. WHILE 

SYNTHESIZED EXCLUSIVELY IN THE CYTOSOL FROM ITS CONSTITUENT AMINO ACIDS, GSH IS 

DISTRIBUTED IN DIFFERENT COMPARTMENTS, INCLUDING MITOCHONDRIA WHERE ITS 

CONCENTRATION IN THE MATRIX EQUALS THAT OF THE CYTOSOL.  GLUTATHIONE 

DECREASES IN MITOCHONDRIAL DISEASE. 

[56] 

OXPHOS  SUBUNIT WESTERN BLOT WESTERN BLOTTING OF DENATURED SELECTED SUBUNITS OF OXPHOS ENZYMES  

ALLOWS  RECOGNITION OF DEFECTS  CAUSING A SUBUNIT TO BE  DECREASED, MISSING OR 

OF ABNORMAL MOLECULAR WEIGHT. WESTERN BLOTTING IS MORE AMENABLE TO PROTEIN 

QUANTITATION AND OFFERS THE ADDITIONAL ABILITY TO CONFIRM MOLECULAR IDENTITY OF 

THE TARGET PROTEIN BY MOLECULAR WEIGHT.   

[57] 

BLUE NATIVE GEL ELECTROPHORESIS 

(OXPHOS) 
CLEAR NATIVE ELECTROPHORESIS AND BLUE NATIVE ELECTROPHORESIS ARE MICROSCALE 

TECHNIQUES FOR THE ISOLATION OF MEMBRANE PROTEIN COMPLEXES. PROTEINS ARE 

VISUALIZED IN BLUE NATIVE GELS WITH COOMASSIE BLUE G-250 DYE. BLUE NATIVE-
PAGE RETAINS ENZYME COMPLEXES IN THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. 
BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY 

SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE DETERMINED. 

[38, 39, 
58-62] 

CLEAR NATIVE GEL OXPHOS IMMUNOBLOT CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN THEIR INTACT AND 

ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY ASSEMBLED COMPLEX, 
AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY INTERMEDIATES, CAN THEN BE 

DETERMINED BY IMMUNOBLOTTING USING ONE OR MORE SUBUNIT ANTIBODIES. 

[39, 63] 

CLEAR NATIVE GEL OXPHOS ENZYMOLOGY CLEAR NATIVE GEL ELECTROPHORESIS RETAINS ENZYME COMPLEXES IN 
THEIR INTACT AND ENZYMATICALLY ACTIVE FORM. BOTH THE AMOUNT OF THE FULLY 

ASSEMBLED COMPLEX, AND THE PRESENCE OF ANY SMALLER STALLED ASSEMBLY 

INTERMEDIATES, CAN THEN BE DETERMINED BY ASSESSING THE ENZYME ACTIVITY OF EACH 

OXPHOS ENZYME. 

[39, 64-
67] 

HUMAN MITOCHONDRIAL TRANSCRIPTION FACTOR 

A (HMTTFA OR TFAM) 
INVOLVED IN THE CONTROL OF REPLICATION AND TRANSCRIPTION OF MTDNA; H-MTTFA 

LEVELS ARE SIGNIFICANTLY INVERSELY RELATED TO BLOOD LACTATE AND THE PERCENT OF 

RRF, COX DEFICIENT FIBERS 

[68] 

MITOCHONDRIAL DNA ABSENCE SENSITIVE 

FACTOR) (MIDAS) 
EXPRESSION WAS ENHANCED BY THE ABSENCE OF MITOCHONDRIAL DNA [69] 

BIOGENESIS REGULATOR PEROXISOME DRAMATICALLY INDUCE BOTH NUCLEAR AND MITOCHONDRIAL GENE EXPRESSION; [70] 



PROLIFERATOR-ACTIVATED RECEPTOR-GAMMA 

COACTIVATOR-1ALPHA (PGC-1ALPHA) 
INCREASED IN MITOCHONDRIAL DISEASE 

8-OXOGUANINE DNA GLYCOLASE-1 (OGG-1) OXIDATIVE-INDUCED LESIONS TO MTDNA CAN BE REPAIRED BY THE DNA REPAIR ENZYME 

8-OXOGUANINE DNA GLYCOLASE-1; INCREASED IN MITOCHONDRIAL DISEASE 
[70] 

MANGANESE SUPEROXIDE DISMUTASE (MNSOD) ROS ARE DETOXIFIED BY ANTIOXIDANT ENZYMES WITHIN THE MITOCHONDRION, SUCH AS 

MANGANESE SUPEROXIDE DISMUTASE (MNSOD); INCREASED IN MITOCHONDRIAL DISEASE 
[70] 

AIF APOPTOTIC PROTEIN; ROS PROMOTE THE RELEASE OF APOPTOSIS-INDUCING FACTOR 

(AIF) AND CYTOCHROME C BY INDUCING MITOCHONDRIAL PERMEABILITY TRANSITION PORE 

(MTPTP) OPENING; INCREASED IN MITOCHONDRIAL DISEASE 

[70] 

BCL-2 APOPTOTIC PROTEIN; ROS PROMOTE THE RELEASE OF APOPTOSIS-INDUCING FACTOR 

(AIF) AND CYTOCHROME C BY INDUCING MITOCHONDRIAL PERMEABILITY TRANSITION PORE 

(MTPTP) OPENING. THE CONFORMATION OF THE MTPTP IS REGULATED BY THE BCL-2 

FAMILY OF PROTEINS CONSISTING 
OF BOTH PRO- (I.E., BAX) AND ANTIAPOPTOTIC MEMBERS (I.E., BCL-2) IN THE OUTER 

MEMBRANE OF THE MITOCHONDRION; INCREASED IN MITOCHONDRIAL DISEASE 

[70] 

ACONITASE ENZYMOLOGY TCA CYCLE ENZYME, DECREASED IN MITOCHONDRIAL DISEASE [70] 

MUSCLE HISTOLOGY 

GOMORI TRICHROME RAGGED RED FIBERS [71] 

SUCCINATE DEHYDROGENASE (SDH) COMPLEX II [71] 

CYCTOCHROME C OXIDASE (COX) (COMPLEX IV) COMPLEX IV (COX DEFICIENCY) [71] 

COMBINED SDH + COX COX DEFICIENCY, INCREASED SDH (MELAS) [72] 

FIBROBLAST GROWTH FACTOR 21 (FGF21) MITOCHONDRIAL DISEASES PRODUCE  A TRANSCRIPTIONAL RESPONSE MIMICKING 

STARVATION WHICH INCLUDES INCREASED EXPRESSION OF THE METABOLIC REGULATOR 

FGF21 

[10, 21, 
23] 

OXPHOS SUBUNIT IMMUNOHISTOCHEMISTRY IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE ANALYSIS OF VERY SMALL NUMBERS OF 

CELLS AND IS PARTICULARLY WELL-SUITED TO THE ANALYSIS OF CULTURED CELLS, WHERE 

CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH CONFIDENCE AND CELL POPULATION 

MOSAICISM CAN BE DETECTED. DEFECTS CAUSING DECREASES OR ABSENCES OF SUBUNITS 

CAN BE DETECTED. 

[71, 73] 

HUMANIN IMMUNOHISTOCHEMISTRY HUMANIN IS AN ENDOGENOUS PEPTIDE THAT INCREASES CELLULAR ATP. IT IS INCREASED 

IN RAGGED RED/COX DEFICIENT FIBERS. IMMUNOHISTOCHEMISTRY CAN BE USED FOR THE 

ANALYSIS OF VERY SMALL NUMBERS OF CELLS AND IS PARTICULARLY WELL-SUITED TO THE 

ANALYSIS OF CULTURED CELLS, WHERE CELLULAR INDIVIDUALITY CAN BE ASSESSED WITH 

CONFIDENCE AND CELL POPULATION MOSAICISM CAN BE DETECTED. DEFECTS CAUSING 

DECREASES OR ABSENCES OF SUBUNITS CAN BE DETECTED. 

[74] 

MYOTUBES 

METABOLIC PROFILING LC-MS/MS IN CULTURE MEDIA. EXTRACELLULAR METABOLIC PROFILE OF MITOCHONDRIAL 

DYSFUNCTION; CORRELATES WITH PLASMA MEASUREMENTS. 
[13] 

HIGH RESOLUTION RESPIROMETRY LIVE CELLULAR RESPIRATION (COMPLEXES I-V) ALLOWS MEASUREMENT OF  PARAMETERS 

SUCH AS MITOCHONDRIAL MEMBRANE POTENTIAL, RESERVE CAPACITY FOR ATP 

GENERATION, AND COMPLEX I-IV SUBSTRATE UTILIZATION. THIS TESTING ASSESSES 

FUNCTIONAL CHARACTERISTICS OF INTACT MITOCHONDRIA WITHIN LIVING TISSUES.  

[13] 

GENETIC 

CELLULAR ENERGETICS GENE SEQUENCING 

(NGS) (NDNA + MTDNA) 
EXON + EXON/INTRON BOUNDARY SEQUENCING OF GENES RELATED TO CELLULAR 

ENERGETICS FUNCTION 
[75-77] 

MTDNA SEQUENCING   

EXOME SEQUENCING (NGS) (NDNA)  [75, 78-
162] 

MTDNA DELETION/DUPLICATION (LEUKOCYTES) MTDNA DELETION DISORDERS; SOMATIC MUTATIONS [163] 

MTDNA DELETION/DUPLICATION (MUSCLE) MTDNA DELETION DISORDERS; SOMATIC MUTATIONS [163] 

MTDNA COPY NUMBER  (LEUKOCYTES) MTDNA DEPLETION AND MTDNA INCREASES [164, 
165] 

MTDNA COPY NUMBER  (MUSCLE) MTDNA DEPLETION AND MTDNA INCREASES [163] 

MITOCHONDRIAL HAPLOTYPE EVOLUTIONARILY RELATED HAPLOTYPE GROUPS AND PHENOTYPIC CHARACTERISTICS [166, 
167] 

MITOCHONDRIAL GENE EXPRESSION PROFILING  [168-
171] 
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