CDE Detailed Report

Disease: Traumatic Brain Injury
Subdomain Name: Biomechanical Devices
CRF: Head Kinematics Estimates Form

Displaying 1 - 50 of 105
CDE ID CDE Name Variable Name Definition Short Description Question Text Permissible Values Description Data Type Disease Specific Instructions Disease Specific Reference Population Classification (e.g., Core) Version Number Version Date CRF Name (CRF Module / Guidance) Subdomain Name Domain Name Size Input Restrictions Min Value Max Value Measurement Type External Id Loinc External Id Snomed External Id caDSR External Id CDISC
C56918 Head impact pulse angular acceleration frequency value HeadImpPulseAngularAcclFreqVal The value of the frequency content of pulse angular acceleration in head impact assessment The value of the frequency content of pulse angular acceleration in head impact assessmen Frequency content of angular (rotational) acceleration pulse (Hz- if different than linear acceleration): Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 15:43:07.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

radians per second squared
C57013 Angular acceleration confirm publish method indicator AngAccCnfPblshMthInd Indication of whether angular accelerations are confirmed with published method Indication of whether angular accelerations are confirmed with published method Angular accelerations are confirmed with published method No;Yes No;Yes Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-12-06 15:26:58.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56862 Biomechanical device sensor model name BiomechanDevSenModelName The name for the model of biomechanical device/sensor used to collect data The name for the model of biomechanical device/sensor used to collect dat Sensor Model: Alphanumeric

(if any)
Model name and number for final assembled sensor package if available. Fill in the appropriate vendor per the instructions.

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 14:03:17.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 4000

Free-Form Entry

C56929 Head Impact Telemetry (HIT) - Severity profile value HITSeverityProfileVal The value as related to Head Impact Telemetry System Severity Profile (HITsp), a non-dimensional head impact severity measure that combines peak linear and angular acceleration with impact location to produce a single impact metric to predict concussion The value as related to Head Impact Telemetry System Severity Profile (HITsp), a non-dimensional head impact severity measure that combines peak linear and angular acceleration with impact location to produce a single impact metric to predict concussio HIT Severity Profile (HITsp) Numeric Values

A weighted sum of peak linear and rotational accelerations, HIC, and Gadd SI with empirically determined weights.
See Ref for equation.

HITsp is effectively a commercial name of Principal Component Score (PCS). They are identical.

Greenwald, R. R. M., J. Gwin, J. Chu, and J. Crisco. Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure. Neurosurgery 62:789&#8211;798, 2008. Adult;Pediatric Exploratory 1.00 2017-08-03 16:26:42.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Unit-less
C57024 Description detection method validation performance citation text DscrDtcMtVldPrfCtTxt Text field related to the description of detection method and validation performance and/or citation related to the detection method Text field related to the description of detection method and validation performance and/or citation related to the detection method If yes, include description of detection method and validation performance or citation Alphanumeric

See Video Device Confirmation CRF

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-12-08 11:51:36.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 500

Free-Form Entry

C56879 Head impact detection publish algorithm indicator HeadImpctDetectPubAlgrithmfInd The indicator related to whether the head impacts were confirmed with a published impact detection algorithm The indicator related to whether the head impacts were confirmed with a published impact detection algorith Exposures are confirmed with published impact detection algorithm: No;Yes No;Yes Alphanumeric

See Video Device Confirmation CRF

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 14:49:31.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C57003 Post-trigger impact duration PstTrgImpDur Duration of post-trigger impact (in ms) Duration of post-trigger impact (in ms) Post-trigger: Numeric Values

Exposure duration / sampling window - Length of time data is collected for a given exposure. Record time in milliseconds, both pretrigger, posttrigger, or pre and post trigger total (milliseconds)

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-12-06 11:59:05.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Millisecond
C19247 Subject ID SubIDNam Subject identification ID Subject identification ID Subject ID: Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2014-06-05 13:10:49.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56907 Head impact linear velocity prior impact value HeadImpLinVelocityPImpactVal The value of the initial linear velocity before the head impact The value of the initial linear velocity before the head impac Linear velocity Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Exploratory 1.00 2017-08-03 15:43:07.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Meter per Second
C56919 Head impact peak rotational acceleration x value HeadImpPeakRotatAccelerXVal The value of peak rotational acceleration in the x direction in head impact assessment The value of peak rotational acceleration in the x direction in head impact assessmen Peak rotational acceleration x: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C57014 Angular sensor direct measurement type AngSnsrDrctMsrTyp Type of measurement done by the angular sensor Type of measurement done by the angular sensor Does sensor directly measure: angular acceleration in radians per second squared;angular velocity in radians per second angular acceleration in radians per second squared (rad/s^2);angular velocity in radians per second Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-12-06 15:35:41.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56863 Helmet model name HelmetModelName The name for the model of helmet worn by the subject/participant The name for the model of helmet worn by the subject/participan Helmet Model (if any): Alphanumeric

Helmet model number for helmet per vendor or manufacturer

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 14:03:17.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56930 Brain injury peak principal strain value BrainInjPeakPrincipalStrainVal The value as related to peak principal strain in analysis of brain injury The value as related to peak principal strain in analysis of brain injur Peak Principal strain: Numeric Values

recommend 95th percentile peak maximum principal strain value among all elements in the brain mesh. If possible, also recommend reporting where this peak value occurred in the brain.

Adult;Pediatric Exploratory 1.00 2017-08-04 08:27:04.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C00008 Age value AgeVal Value for participant's age, calculated as elapsed time since the birth of the participant Value for participant's age, calculated as elapsed time since the birth of the participant Subject age: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 3.10 2024-02-29 15:47:28.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

0 1800 month
C57025 Description citation angular acceleration publish method text DsCtAngAccPbMthTxt Text field with description or citations related to if angular accelerations are confirmed in a published method Text field with description or citations related to if angular accelerations are confirmed in a published method If yes, include citation, if not include description: Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-12-08 11:56:08.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 4000

Free-Form Entry

C56884 Head accelerometer range HeadAccelerometerRng The range of the head accelerometer The range of the head acceleromete Accelerometer full scale range. +/- (m/sec^2): Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:04:15.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 15

Free-Form Entry

C57004 Total record length impact duration TtlRcLngImpDur Duration of total record length impact (in ms) Duration of total record length impact (in ms) Total record length: Numeric Values

Exposure duration / sampling window - Length of time data is collected for a given exposure. Record time in milliseconds, both pretrigger, posttrigger, or pre and post trigger total (milliseconds)

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-12-06 12:02:05.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Millisecond
C22780 Date time clock type DateTimeClockTyp Type of clock used to record date and time Type of clock used to record date and time am;PM;24-hour clock am;PM;24-hour clock Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.1 10/16/2024 8:50:25 AM Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56908 Head impact peak linear acceleration x value HeadImpPeakLinearAccelerXVal The value of peak linear acceleration in the x direction in head impact assessment The value of peak linear acceleration in the x direction in head impact assessmen Peak linear acceleration x: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C56920 Head impact peak rotational acceleration y value HeadImpPeakRotatAccelerYVal The value of peak rotational acceleration in the y direction in head impact assessment The value of peak rotational acceleration in the y direction in head impact assessmen Peak rotational acceleration y: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C57015 Gyroscope calibration type constant type GyrClbTypCnsTyp Type of gyroscope calibration and constants Type of gyroscope calibration and constants Gyroscope calibration type and constants: None;Linear Y=mX+B;non-linear None;Linear Y=mX+B;non-linear Y=kX^n Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Exploratory 1.00 2017-12-06 15:43:35.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56864 Helmet size category HelmetSizeCat The category for the size of helmet worn by the subject/participant The category for the size of helmet worn by the subject/participan Helmet size (if any): 2XS;XS;S;M;L;XL;2XL;3XL;4XL;5XL;Youth S;Youth M;Youth L;Youth S/M;Youth L/XL;Other,specify 2XS;XS;S;M;L;XL;2XL;3XL;4XL;5XL;Youth S;Youth M;Youth L;Youth S/M;Youth L/XL;Other, specify Alphanumeric

Per most common available sizes, 2 extra small to 5 extra large, and youth small to youth large/extra large. 2 extra small, extra small, small, large, youth small, youth medium, youth large, youth small/medium, youth large/extra large. If another numeric size convention is used, then provide the number and units or convention in other (specify). Fill in the appropriate helmet size per the instructions, or fill in the other numeric convention and units or convention name in other (specify)

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 14:05:22.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56931 Brain injury peak fiber oriented strain text BrainInjuPeakFiberOrientStrTxt The text related to peak fiber oriented strain in analysis of brain injury The text related to peak fiber oriented strain in analysis of brain injur Peak fiber oriented strain: Alphanumeric

recommend 95th percentile peak strain value along the white matter fiber direction within the brain. Also recommend specify the technique used to report the fiber-oriented strain, e.g., sampled from FE elements or from neuroimaging. If possible, also recommend reporting where this peak value occurred in the brain white matter region, based on an atlas.

Adult;Pediatric Exploratory 1.00 2017-08-04 08:27:55.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 100

Free-Form Entry

C00035 Gender type GenderTyp Self-reported gender of the participant/subject Self-reported gender of the participant/subjec Subject gender: Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 3.00 2013-08-28 16:08:00.453 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

2200604
C57026 Gyroscope equation use computer derivative type GyrEqUsCmpDrTyp Type of equation used for the computer derivative (in relation to gyroscope) Type of equation used for the computer derivative (in relation to gyroscope) If gyroscope, what equation was used to compute derivative? Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-12-08 12:38:08.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56885 Head accelerometer sample rate value HeadAccelerometerSampleRtVal The rate of sampling of the head accelerometer The rate of sampling of the head acceleromete Accelerometer sampling rate: Numeric Values

(if sensors have different sample rates)

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:05:14.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Hertz
C57005 Data storage trigger threshold value DtStTrgThrsVl Value of data storage (trigger) threshold Value of data storage (trigger) threshold Data Storage (trigger) threshold: Numeric Values

This is the trigger threshold used to trigger an impact. Specifed as linear acceleration, angular acceleration, angular velocity or a combination (check all that apply). Also, if the algorithm requires the signal to exceed a given threshold for a minimum amount of time that should be included as 'MTOM, minimum time over threshold, samples or ms for units'. Specify if triggering is possible independently by axis and enter each if so. Check proprietary option and provide practical threshold in practice as well. Fill trigger for a minimum amount of time that should be included as 'MTOM, minimum time over threshold, samples or ms for units' Specify if triggering is possible independently by axis and enter each if so. Check proprietary option and provide practical threshold in practice as well.

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-12-06 12:05:44.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C56787 Sport type SportTyp The type of sport that the participant/subject plays or was playing The type of sport that the participant/subject plays or was playin Sport: Baseball;Basketball;Beach Volleyball;Biking;Bowling;Boxing;Cheerleading;Cross Country / Track;Diving;Fencing;Field;Field Hockey;Football;Golf;Gymnastics;Ice Hockey;In Line Hockey;Lacrosse;Rifle;Rowing/Crew;Rugby;Sailing;Skiing;Soccer;Sprint Football;Squash;Swimming;Tennis;Volleyball;Water polo;Wrestling;Softball;Other, specify Baseball;Basketball;Beach Volleyball;Biking;Bowling;Boxing;Cheerleading;Cross Country / Track;Diving;Fencing;Field;Field Hockey;Football;Golf;Gymnastics;Ice Hockey;In Line Hockey;Lacrosse;Rifle;Rowing/Crew;Rugby;Sailing;Skiing;Soccer;Sprint Football;Squash;Swimming;Tennis;Volleyball;Water polo;Wrestling;Softball;Other, specify Alphanumeric

Select from the list of permissible values below. Note: This information may make the data personal identifiable along with position

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental 1.00 2017-07-24 13:54:29.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Multiple Pre-Defined Values Selected

C56909 Head impact peak linear acceleration y value HeadImpPeakLinearAccelerYVal The value of peak linear acceleration in the y direction in head impact assessment The value of peak linear acceleration in the y direction in head impact assessmen Peak linear acceleration y: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C56921 Head impact peak rotational acceleration z value HeadImpPeakRotatAccelZVal The value of peak rotational acceleration in the z direction in head impact assessment The value of peak rotational acceleration in the z direction in head impact assessmen Peak rotational acceleration z: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C57016 Gyroscope nominal non-linear value GyrNmNnLnrVal Value of gyroscope nominal non-linearity (% of output) Value of gyroscope nominal non-linearity (% of output) Gyroscope nominal non-linearity (% of output) Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Exploratory 1.00 2017-12-06 15:53:33.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56865 Biomechanical device mount location type BiomechDeviceMountLocationTyp The type of location where the biomechanical device/sensor is mounted The type of location where the biomechanical device/sensor is mounte Device mounting location [or interface and location]: Helmet;Mouth guard;Left ear;Right ear;Skin;Teeth;Ear canal;Other, specify Helmet;Mouth guard;Left ear;Right ear;Skin;Teeth;Ear canal;Other Alphanumeric

Location of placement of final assembled device, including helmet (inside helmet), mouthguard, ear (lef or right), skin, teeth, ear canal or other (specify). Fill in the appropriate device mounting location or interface and location per the instructions.

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 14:08:16.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56932 Head impact finite element model name HeadImpFEModelName The name of the finite-element head impact modeling The name of the finite-element head impact modelin FE Model Name: ABM;GHBMC;THUMS;WHIM;Other, specify ABM;GHBMC;THUMS;WHIM;Other, specify Alphanumeric

Abbreviation of the head injury model name used; e.g., ABM, GHBMC, THUMS, WHIM, etc.

Adult;Pediatric Exploratory 1.00 2017-08-04 08:28:43.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C01520 Head circumference measurement HeadCircumfMeasr Circumferential measurement of the head at the widest point - the distance from above the eyebrows and ears and around the back of the head Circumferential measurement of the head at the widest point - the distance from above the eyebrows and ears and around the back of the head Subject head size (circumference): Numeric Values

Head circumference should be measured with a non-stretch tape held firmly, but without squeezing skin, in the horizontal plane through the glabella (forehead above the eyebrows) and opisthocranion [posteriormost point of the occiput]. https://www.ejmanager.com/mnstemps/134/1997_4_3_1.pdf

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 3.00 2013-07-24 11:38:01.2 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

0 100 centimeter 3181613
C58451 Biomechanical device sensor other text BiomechanicalDeviceSenOTH The other specify for type of biomechanical device/sensor used to collect data The other specify for type of biomechanical device/sensor used to collect dat Specify Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 13:56:27.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56889 Gyroscope range GyroscopeRng The range of the gyroscope The range of the gyroscop Gyroscope full scale range +/- (rad/s): Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:10:24.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C57006 Accelerometer nominal non-linearity value AccNmNnLnrVal Value of accerlerometer nominal non-linearity (% of output) Value of accerlerometer nominal non-linearity (% of output) Accelerometer nominal non-linearity, (% of output): Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Exploratory 1.00 2017-12-06 14:07:59.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

percent
C56855 Sport position type SportPositionTyp The type of sport position played by the subject/participant The type of sport position played by the subject/participan Position: Base Coach;Base Runner;Batter;Catcher;Center Field;First Base;Left Field;Participant;Pitcher;Right Field;Second Base;Short Stop;Third Base;Center;Forward;Guard;Rider;102lbs;105lbs;108lbs;112lbs;115lbs;118lbs;122lbs;126lbs;130lbs;135lbs;140lbs;147lbs;154lbs;160lbs;168lbs;175lbs;200lbs;Heavyweight;Base;Flyer;Back Spotter;Front Spotter;Unknown;Diver;Decathlete;Heptathlete;Jumper;Pentathlete;Runner;Thrower;Pole Vaulter;Defensive Back;Forward/Attack;Goalkeeper;Midfielder;Cornerback;Defensive End;Defensive Tackle/Nose Guard;Flanker/Wide Receiver;Holder;Punter/Kicker;Linebacker;Long Snapper;Off (tight) End;Off Guard;Off Tackle;Quarterback;Running Back/Slotback;Safety;Special Teams (FG Offense);Special Teams (FG Defense);Special Teams (Punt Return);Special Teams (Punt Coverage);Special Teams (Kickoff Coverage);Special Teams (Kickoff Return);Defense Right;Defense Left;Forward Attack;Goal Keeper;Wing (left);Wing (right);Middlefield;Coxwain;Port;Starboard;Loosehead Prop;Hooker;Tighthead Prop;Second Row;Blindside Flanker;Openside Flanker;Number 8;Scrum-half;Fly-half;Alpine;Cross Country;Singles;Doubles;Swimmer;Libero;Middle Blocker;Outside Hitter;Setter;125lbs;133lbs;141lbs;149lbs;157lbs;165lbs;174lbs;184lbs;197lbs;Opposite/Right side Hitter Base Coach;Base Runner;Batter;Catcher;Center Field;First Base;Left Field;Participant;Pitcher;Right Field;Second Base;Short Stop;Third Base;Center;Forward;Guard;Rider;102lbs;105lbs;108lbs;112lbs;115lbs;118lbs;122lbs;126lbs;130lbs;135lbs;140lbs;147lbs;154lbs;160lbs;168lbs;175lbs;200lbs;Heavyweight;Base;Flyer;Back Spotter;Front Spotter;Unknown;Diver;Decathlete;Heptathlete;Jumper;Pentathlete;Runner;Thrower;Pole Vaulter;Defensive Back;Forward/Attack;Goalkeeper;Midfielder;Cornerback;Defensive End;Defensive Tackle/Nose Guard;Flanker/Wide Receiver;Holder;Punter/Kicker;Linebacker;Long Snapper;Off (tight) End;Off Guard;Off Tackle;Quarterback;Running Back/Slotback;Safety;Special Teams (FG Offense);Special Teams (FG Defense);Special Teams (Punt Return);Special Teams (Punt Coverage);Special Teams (Kickoff Coverage);Special Teams (Kickoff Return);Defense Right;Defense Left;Forward Attack;Goal Keeper;Wing (left);Wing (right);Middlefield;Coxwain;Port;Starboard;Loosehead Prop;Hooker;Tighthead Prop;Second Row;Blindside Flanker;Openside Flanker;Number 8;Scrum-half;Fly-half;Alpine;Cross Country;Singles;Doubles;Swimmer;Libero;Middle Blocker;Outside Hitter;Setter;125lbs;133lbs;141lbs;149lbs;157lbs;165lbs;174lbs;184lbs;197lbs;Opposite/Right side Hitter Alphanumeric

The primary position of the participant at the time of the event(s). Select from list of permissible values for each sport. Note: Depending on the sample size, this data may be personally identifiable. It is up to the researcher to determine if this information should be collected.

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 13:28:03.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Multiple Pre-Defined Values Selected

C56910 Head impact peak linear acceleration z value HeadImpPeakLinearAccelerZVal The value of peak linear acceleration in the z direction in head impact assessment The value of peak linear acceleration in the z direction in head impact assessmen Peak linear acceleration z: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

C56922 Head impact peak rotational acceleration magnitude value HeadImpPeakRotatAccelMagVal The value of peak rotational acceleration magnitude measured in radian or degree for head impact assessment The value of peak rotational acceleration magnitude measured in radian or degree for head impact assessmen Peak rotational acceleration magnitude: Numeric Values

Radian or Degree

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 15:45:50.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Radian or degree
C57017 Gyroscope 0dB pass band value Gyr0dBPssBndVal Value of the gyroscope 0dB pass-band (f1-f2, Hz) Value of the gyroscope 0dB pass-band (f1-f2, Hz) Gyroscope 0dB pass-band (f1-f2, Hz): Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Exploratory 1.00 2017-12-06 15:57:23.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56866 Biomechanical device mouth guard type BiomechDevMouthGuardTyp The type of mouth guard where the biomechanical device is mounted The type of mouth guard where the biomechanical device is mounte For mouth guard: Custom;Boil-and-bite model Custom;Boil-and-bite model Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 14:16:03.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56933 Head impact finite element model version name HeadImpFEModelVersionNam The name of the finite element head impact modeling The name of the finite element head impact modelin FE Model Version: Alphanumeric

Currently, it is not typical to report a model version number except for a few (GHBMC/THUMS). Recommend to report a major and a minor version number in the future, e.g., Version 1.0, Version 2.1. Also recommend providing citation of the model description and validation for the specific model. Need to further discuss what constitutes a major version vs. a minor version – for example, change of head/brain meshing, change of material property (isotropic vs. anisotropic), etc. may constitute a major version, while geometrical scaling and revision on brain-skull boundary conditions, etc. may be a minor version.

Adult;Pediatric Exploratory 1.00 2017-08-04 08:29:26.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C01522 Height measurement HgtMeasr Measurement of participant's height Measurement of participant's height Subject height: Numeric Values Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 3.10 2024-02-29 15:49:20.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

0 400 centimeter 649
C58452 Helmet size other text HelmetSizeOTH The other specify for the size of helmet worn by the subject/participant The other specify for the size of helmet worn by the subject/participan Specify Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 14:05:22.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events 255

Free-Form Entry

C56890 Gyroscope sample rate value GyroscopeSampleRtVal The value related to rate of sampling of the gyroscope The value related to rate of sampling of the gyroscop Gyroscope sampling rate: Numeric Values

(if sensors have different sample rates)

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659-2668 Adult;Pediatric Supplemental-Highly Recommended 1.00 2017-08-03 15:11:00.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

Hertz
C56911 Angular velocity unit of measure AngularVelocityUOM The unit of measure for angular velocity The unit of measure for angular velocit Angular velocity units: rad/s;deg/s rad/s=radians per second;deg/s=degrees per second Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 16:00:18.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C57007 Accelerometer calibration type calibration constant type AccClbTypClbCnsTyp Type of accelerometer calibration and calibration constants Type of accelerometer calibration and calibration constants Accelerometer calibration type and calibration constants: None;Linear Y=mX+B;non-linear Y=KX^n None;Linear Y=mX+B;non-linear Y=KX^n Alphanumeric Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Exploratory 1.00 2017-12-06 14:12:51.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56856 Sport competition level type SportCompLevelTyp The level of competition related to the sport in which the subject participated The level of competition related to the sport in which the subject participate Subject's competition level: Club;College;High School;Rec Club level sport competition;College;High School;Recreational level sport competition Alphanumeric

Competition level of practice or game participated in by subject at time of recording of exposure event. Determine competition level based on official practice or competition category. If other, or laboratory/ exploratory, etc, record if so. Note: Recreation ('Rec') is non-competitive recreational sport while competitive recreational is referred to as 'Club'.

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M. & Caswell SV. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine. 2017;45(10):2379-2387<br />Wu LC, Zarnescu L, Nangia V, Cam B, & Camarillo, DB. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard. IEEE Transactions on Bio-Medical Engineering.2014;61(11):2659&#8211;2668 Adult;Pediatric Supplemental 1.00 2017-08-03 13:32:00.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Single Pre-Defined Value Selected

C56923 Head Injury Criterion (HIC) - Calculated average value HeadInjuryCriterionCalAveVal The calculated average value of the Head Injury Criterion (HIC) which is based on the average value of the acceleration over the most critical part of the deceleration The calculated average value of the Head Injury Criterion (HIC) which is based on the average value of the acceleration over the most critical part of the deceleratio Head Injury Criterion (HIC) Numeric Values

Linear acceleration using "g" as unit, time "ms" as unit.
See REF for equation.

Versace, J. A Review of the Severity Index. Warrendale, PA: SAE International, 1971. Adult;Pediatric Exploratory 1.00 2017-08-03 16:23:27.0 Head Kinematics Estimates Form Biomechanical Devices Disease/Injury Related Events

Free-Form Entry

CSV